706 research outputs found

    New Species of Siparuna (Siparunaceae) IV

    Get PDF
    A new species of Siparuna (Siparunaceae), S. ficoides, is described, illustrated, and placed in a phylogenetic context based on morphological and DNA sequence data. The species, which is a monoecious subcanopy tree, is known from three collections made near Manaus, Brazil (two from the same tree), and one in the state of Bolivar, Venezuela.Se describe y se ilustra una nueva especie de Siparuna (Siparunaceae), S. ficoides, ademas se la ubica en un contexto filogenetico basado en datos morfologicos y en sequencias de DNA. Esta nueva especie es un arbol monoico de subdosel, de la cual se han registrado tres colecciones cerca de Manaos, Brasil (dos del mismo arbol) y una coleccion en el Estadod e Bolivar, Venezuela

    New Species of Siparuna (Siparunaceae) III

    Get PDF
    Three new species of Siparuna (Siparunaceae) are described, illustrated, and placed in a phylogenetic context: S. gentryana from western Ecuador and adjacent Colombia, S. lozaniana from the western Andes in Colombia, and S. vasqueziana from Amazonian Peru. In addition, Siparuna calantha from the Sierra Nevada de Santa Marta, originally described by Janet Perkins as a variety of a Mexican entity, is raised to species rank because its broader leaves and more numerous carpels readily distinguish it from its apparent closest relative, a species from the western Colombian Andes. Each of the species is known from several collections, which allowed the secure matching of sexual morphs in the three that are dioecious

    New species of Siparuna (Monimiaceae) II

    Get PDF
    Volume: 6Start Page: 103End Page: 11

    Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge

    Get PDF
    Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-”m cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 ± 12 ml g–1, and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 ± 2 ml g–1. EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions

    Cell-seeded thermoreversible hydrogel-polyurethane composites for nucleus pulposus augmentation

    Get PDF
    Tissue engineering represents an alternative approach to the current invasive surgical procedures for the intervertebral disc (IVD) repair. The combination of injectable hydrogels and elastic biomaterials allow three-dimensional cell cultures and provide mechanical stability. In the present study a thermoreversible hyaluronan (HA) hydrogel as well as fibrin glue were mixed with polyurethane (PU) and their effect was investigated on the proliferation and differentiation of human IVD (hIVD cells) and mesenchymal stem cells (hMSCs) by in vitro and ex-vivo experiments

    Solvable Lie algebras with triangular nilradicals

    Full text link
    All finite-dimensional indecomposable solvable Lie algebras L(n,f)L(n,f), having the triangular algebra T(n) as their nilradical, are constructed. The number of nonnilpotent elements ff in L(n,f)L(n,f) satisfies 1≀f≀n−11\leq f\leq n-1 and the dimension of the Lie algebra is dim⁥L(n,f)=f+1/2n(n−1)\dim L(n,f)=f+{1/2}n(n-1)

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    An Extended Network of Genomic Maintenance in the Archaeon Pyrococcus abyssi Highlights Unexpected Associations between Eucaryotic Homologs.

    Get PDF
    In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes

    Distributed temperature sensing as a down-hole tool in hydrogeology

    Get PDF
    Distributed Temperature Sensing (DTS) technology enables down-hole temperature monitoring to study hydrogeological processes at unprecedentedly high frequency and spatial resolution. DTS has been widely applied in passive mode in site investigations of groundwater flow, in-well flow, and subsurface thermal property estimation. However, recent years have seen the further development of the use of DTS in an active mode (A-DTS) for which heat sources are deployed. A suite of recent studies using A-DTS down-hole in hydrogeological investigations illustrate the wide range of different approaches and creativity in designing methodologies. The purpose of this review is to outline and discuss the various applications and limitations of DTS in down-hole investigations for hydrogeological conditions and aquifer geological properties. To this end, we first review examples where passive DTS has been used to study hydrogeology via down-hole applications. Secondly, we discuss and categorize current A-DTS borehole methods into three types. These are thermal advection tests, hybrid cable flow logging, and heat pulse tests. We explore the various options with regards to cable installation, heating approach, duration, and spatial extent in order to improve their applicability in a range of settings. These determine the extent to which each method is sensitive to thermal properties, vertical in well flow, or natural gradient flow. Our review confirms that the application of DTS has significant advantages over discrete point temperature measurements, particularly in deep wells, and highlights the potential for further method developments in conjunction with other emerging fiber optic based sensors such as Distributed Acoustic Sensing. This article is protected by copyright. All rights reserved
    • 

    corecore