Abstract

All finite-dimensional indecomposable solvable Lie algebras L(n,f)L(n,f), having the triangular algebra T(n) as their nilradical, are constructed. The number of nonnilpotent elements ff in L(n,f)L(n,f) satisfies 1fn11\leq f\leq n-1 and the dimension of the Lie algebra is dimL(n,f)=f+1/2n(n1)\dim L(n,f)=f+{1/2}n(n-1)

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019