113 research outputs found

    Chemo-dynamical Evolution of the ISM in Galaxies

    Full text link
    Chemo-dynamical models have been introduced in the late eighties and are a generally accepted tool for understanding galaxy evolution. They have been successfully applied to one-dimensional problems, e.g. the evolution of non-rotating galaxies, and two-dimensional problems, e.g. the evolution of disk galaxies. Recently, also three-dimensional chemo-dynamical models have become available. In these models the dynamics of different components, i.e. dark matter, stars and a multi-phase interstellar medium, are treated in a self-consistent way and several processes allow for an exchange of matter, energy and momentum between the components or different gas phases. Some results of chemo-dynamical models and their comparison with observations of chemical abundances or star formation histories will be reviewed.Comment: 10 Pages, 5 Figures, to appear in "From Observations to Self-Consistent Modelling of the ISM in Galaxies", 2003, eds M. Avillez et a

    Reconstructing the Arches I: Constraining the Initial Conditions

    Full text link
    We have performed a series of N-body simulations to model the Arches cluster. Our aim is to find the best fitting model for the Arches cluster by comparing our simulations with observational data and to constrain the parameters for the initial conditions of the cluster. By neglecting the Galactic potential and stellar evolution, we are able to efficiently search through a large parameter space to determine e.g. the IMF, size, and mass of the cluster. We find, that the cluster's observed present-day mass function can be well explained with an initial Salpeter IMF. The lower mass-limit of the IMF cannot be well constrained from our models. In our best models, the total mass and the virial radius of the cluster are initially (5.1 +/- 0.8) 10^4 Msun and 0.76 +/- 0.12 pc, respectively. The concentration parameter of the initial King model is w0 = 3-5.Comment: 12 pages, 14 Figures, revised and accepted for publication in MNRA

    A Hybrid N-Body Code Incorporating Algorithmic Regularization and Post-Newtonian Forces

    Full text link
    We describe a novel N-body code designed for simulations of the central regions of galaxies containing massive black holes. The code incorporates Mikkola's 'algorithmic' chain regularization scheme including post-Newtonian terms up to PN2.5 order. Stars moving beyond the chain are advanced using a fourth-order integrator with forces computed on a GRAPE board. Performance tests confirm that the hybrid code achieves better energy conservation, in less elapsed time, than the standard scheme and that it reproduces the orbits of stars tightly bound to the black hole with high precision. The hybrid code is applied to two sample problems: the effect of finite-N gravitational fluctuations on the orbits of the S-stars; and inspiral of an intermediate-mass black hole into the galactic center.Comment: 12 pages, 15 figures, accepted for publication in MNRA

    Direct NN-body code on low-power embedded ARM GPUs

    Full text link
    This work arises on the environment of the ExaNeSt project aiming at design and development of an exascale ready supercomputer with low energy consumption profile but able to support the most demanding scientific and technical applications. The ExaNeSt compute unit consists of densely-packed low-power 64-bit ARM processors, embedded within Xilinx FPGA SoCs. SoC boards are heterogeneous architecture where computing power is supplied both by CPUs and GPUs, and are emerging as a possible low-power and low-cost alternative to clusters based on traditional CPUs. A state-of-the-art direct NN-body code suitable for astrophysical simulations has been re-engineered in order to exploit SoC heterogeneous platforms based on ARM CPUs and embedded GPUs. Performance tests show that embedded GPUs can be effectively used to accelerate real-life scientific calculations, and that are promising also because of their energy efficiency, which is a crucial design in future exascale platforms.Comment: 16 pages, 7 figures, 1 table, accepted for publication in the Computing Conference 2019 proceeding

    A pilgrimage to gravity on GPUs

    Get PDF
    In this short review we present the developments over the last 5 decades that have led to the use of Graphics Processing Units (GPUs) for astrophysical simulations. Since the introduction of NVIDIA's Compute Unified Device Architecture (CUDA) in 2007 the GPU has become a valuable tool for N-body simulations and is so popular these days that almost all papers about high precision N-body simulations use methods that are accelerated by GPUs. With the GPU hardware becoming more advanced and being used for more advanced algorithms like gravitational tree-codes we see a bright future for GPU like hardware in computational astrophysics.Comment: To appear in: European Physical Journal "Special Topics" : "Computer Simulations on Graphics Processing Units" . 18 pages, 8 figure

    MYRIAD: A new N-body code for simulations of Star Clusters

    Full text link
    We present a new C++ code for collisional N-body simulations of star clusters. The code uses the Hermite fourth-order scheme with block time steps, for advancing the particles in time, while the forces and neighboring particles are computed using the GRAPE-6 board. Special treatment is used for close encounters, binary and multiple sub-systems that either form dynamically or exist in the initial configuration. The structure of the code is modular and allows the appropriate treatment of more physical phenomena, such as stellar and binary evolution, stellar collisions and evolution of close black-hole binaries. Moreover, it can be easily modified so that the part of the code that uses GRAPE-6, could be replaced by another module that uses other accelerating-hardware like the Graphics Processing Units (GPUs). Appropriate choice of the free parameters give a good accuracy and speed for simulations of star clusters up to and beyond core collapse. Simulations of Plummer models consisting of equal-mass stars reached core collapse at t~17 half-mass relaxation times, which compares very well with existing results, while the cumulative relative error in the energy remained below 0.001. Also, comparisons with published results of other codes for the time of core collapse for different initial conditions, show excellent agreement. Simulations of King models with an initial mass-function, similar to those found in the literature, reached core collapse at t~0.17, which is slightly smaller than the expected result from previous works. Finally, the code accuracy becomes comparable and even better than the accuracy of existing codes, when a number of close binary systems is dynamically created in a simulation. This is due to the high accuracy of the method that is used for close binary and multiple sub-systems.Comment: 24 pages, 29 figures, accepted for publication to Astronomy & Astrophysic

    Parallelization, Special Hardware and Post-Newtonian Dynamics in Direct N - Body Simulations

    Get PDF
    The formation and evolution of supermassive black hole (SMBH) binaries during and after galaxy mergers is an important ingredient for our understanding of galaxy formation and evolution in a cosmological context, e.g. for predictions of cosmic star formation histories or of SMBH demographics (to predict events that emit gravitational waves). If galaxies merge in the course of their evolution, there should be either many binary or even multiple black holes, or we have to find out what happens to black hole multiples in galactic nuclei, e.g. whether they come sufficiently close to merge resulting from emission of gravitational waves, or whether they eject each other in gravitational slingshot interactions

    Shape parameters of Galactic open clusters

    Full text link
    (abridged) In this paper we derive observed and modelled shape parameters (apparent ellipticity and orientation of the ellipse) of 650 Galactic open clusters identified in the ASCC-2.5 catalogue. We provide the observed shape parameters of Galactic open clusters, computed with the help of a multi-component analysis. For the vast majority of clusters these parameters are determined for the first time. High resolution ("star by star") N-body simulations are carried out with the specially developed ϕ\phiGRAPE code providing models of clusters of different initial masses, Galactocentric distances and rotation velocities. The comparison of models and observations of about 150 clusters reveals ellipticities of observed clusters which are too low (0.2 vs. 0.3), and offers the basis to find the main reason for this discrepancy. The models predict that after 50\approx 50 Myr clusters reach an oblate shape with an axes ratio of 1.65:1.35:11.65:1.35:1, and with the major axis tilted by an angle of qXY30q_{XY} \approx 30^\circ with respect to the Galactocentric radius due to differential rotation of the Galaxy. Unbiased estimates of cluster shape parameters require reliable membership determination in large cluster areas up to 2-3 tidal radii where the density of cluster stars is considerably lower than the background. Although dynamically bound stars outside the tidal radius contribute insignificantly to the cluster mass, their distribution is essential for a correct determination of cluster shape parameters. In contrast, a restricted mass range of cluster stars does not play such a dramatic role, though deep surveys allow to identify more cluster members and, therefore, to increase the accuracy of the observed shape parameters.Comment: 13 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    The Origin of the Mass-Metallicity relation: an analytical approach

    Full text link
    The existence of a mass-metallicity (MZ) relation in star forming galaxies at all redshift has been recently established. We aim at studying some possible physical mechanisms contributing to the MZ relation by adopting analytical solutions of chemical evolution models including infall and outflow. We explore the hypotheses of a variable galactic wind rate, infall rate and yield per stellar generation (i.e. a variation in the IMF), as possible causes for the MZ relation. By means of analytical models we compute the expected O abundance for galaxies of a given total baryonic mass and gas mass.The stellar mass is derived observationally and the gas mass is derived by inverting the Kennicutt law of star formation, once the star formation rate is known. Then we test how the parameters describing the outflow, infall and IMF should vary to reproduce the MZ relation, and we exclude the cases where such a variation leads to unrealistic situations. We find that a galactic wind rate increasing with decreasing galactic mass or a variable IMF are both viable solutions for the MZ relation. A variable infall rate instead is not acceptable. It is difficult to disentangle among the outflow and IMF solutions only by considering the MZ relation, and other observational constraints should be taken into account to select a specific solution. For example, a variable efficiency of star formation increasing with galactic mass can also reproduce the MZ relation and explain the downsizing in star formation suggested for ellipticals. The best solution could be a variable efficiency of star formation coupled with galactic winds, which are indeed observed in low mass galaxies.Comment: Accepted by A&
    corecore