2,124 research outputs found
Density of states in graphene with vacancies: midgap power law and frozen multifractality
The density of states (DoS), , of graphene is investigated
numerically and within the self-consistent T-matrix approximation (SCTMA) in
the presence of vacancies within the tight binding model. The focus is on
compensated disorder, where the concentration of vacancies, and
, in both sub-lattices is the same. Formally, this model belongs to
the chiral symmetry class BDI. The prediction of the non-linear sigma-model for
this class is a Gade-type singularity . Our numerical data is compatible with this
result in a preasymptotic regime that gives way, however, at even lower
energies to , . We take this finding as an evidence that similar to the case
of dirty d-wave superconductors, also generic bipartite random hopping models
may exhibit unconventional (strong-coupling) fixed points for certain kinds of
randomly placed scatterers if these are strong enough. Our research suggests
that graphene with (effective) vacancy disorder is a physical representative of
such systems.Comment: References updated onl
Stochastic sensing of relative anisotropic polarizabilities
We describe the concept of stochastic scattering polarimetry. This method allows determination of the anisotropic polarizability of a scattering object using a statistical analysis of the polarimetrically measured intensity distributions in the wave zone (far field). We show that this anisotropic polarizability may be determined even in situations where the state of polarization of the incident field is not known. The efficiency of the recovering procedure is demonstrated by several examples of light scattering in both far- and near-field geometries
Coupled dipole method for modeling optical properties of large-scale random media
We present an extension of the coupled dipole approximation technique to model optical properties of large-scale slabs of homogeneous and inhomogeneous materials. This method is based on a modification of the Green\u27s function to take into account the interaction between dipoles located at arbitrary distances within the slab. This method allows modeling of various aspects of the structural morphology of composite materials, including component size and spatial distribution as well as surface roughness effects. Our procedure provides an adequate description of far-field optical properties such as the specular and diffuse reflection of light
Impact of Gene-Gender Effects of Adrenergic Polymorphisms on Hypothalamic-Pituitary-Adrenal Axis Activity in Depressed Patients
Objective: There is overwhelming evidence that activation of the hypothalamic-pituitary-adrenal (HPA) system plays a major role in depression and cardiovascular disease in genetically susceptible individuals. We hypothesized that due to the multiple interactions between the sympathetic and the HPA systems via adrenoceptors, polymorphisms in these genes could have an impact on HPA axis activity in major depression. Methods: Using the dexamethasone/corticotrophin-releasing hormone (DEX/CRH) test, we investigated the association of alpha 2-adrenoceptor (ADRA2A -1291C -> G) and the beta 2-adrenoceptor gene (ADRB2 Arg16Gly) in 189 patients with major depression during the acute state of the disease and after remission. Results: Male ADRA2A -1291G allele homozygotes showed significant pretreatment HPA axis hyperactivity, with increased adrenocorticotropin (ACTH; F = 4.9, d.f. = 2, p = 0.009) and cortisol responses (F = 6.4, d.f. = 2, p = 0.003). In contrast, female ADRB2 Arg/Arg homozygotes had increased pretreatment ACTH (F = 7.17, d.f. = 2, p = 0.001) and cortisol (F = 8.95, d.f. = 2, p = 0.000) levels. Interestingly, in the respective genotypes, the stress hormones remained elevated in the second DEX/CRH test, despite a reduction in depressive symptoms. Conclusions: This study provides evidence that, depending on gender and polymorphisms, there is continuous HPA axis overdrive in a proportion of patients irrespective of the status of depression. Considering the importance of stress hormones for cardiovascular disorders, our data might suggest that these patients are at high risk of comorbidity between depression and cardiovascular disorders. Copyright (c) 2008 S. Karger AG, Base
Process model for the successful implementation and demonstration of SME-based industry 4.0 showcases in global production networks
Small and medium-sized enterprises (SMEs), many of which operate as suppliers in global production networks (GPN), often times lack behind large enterprises in terms of Industry 4.0 implementation. For this reason, scientific contributions recommend SMEs to approach Industry 4.0 through pilot projects in which individual Industry 4.0 use cases are developed and implemented. Hence, to allow for a targeted development and implementation of Industry 4.0 use cases for SMEs in GPN, this paper proposes a five-step process model that seeks to make use of Industry 4.0 potentials in terms of increased product qualities and logistics performances within such networks. In contrast to existing process models, this paper follows a holistic approach that initially focuses on the identification of potential problems that impede increased product qualities and logistics performances. Building upon these problems, potential Industry 4.0 solutions are derived and transferred into use cases using a structured idea generation and selection process. After the successful implementation of the use case, the procedure is completed by the conversion of the use case into a showcase that might serve as a lighthouse project illustrating the potentials of Industry 4.0 for other production network partners. For testing its practicability, the procedure is exemplarily applied to the GPN of an automotive supplier
Detection of a period decrease in NN Ser with ULTRACAM: evidence for strong magnetic braking or an unseen companion?
We present results of high time resolution photometry of the eclipsing
pre-cataclysmic variable NN Ser. We observed 13 primary eclipses of NN Ser
using the high-speed CCD camera ULTRACAM and derived times of mid-eclipse, from
fitting of light curve models, with uncertainties as low as 0.06 s. The
observed rates of period change appear difficult to reconcile with any models
of orbital period change. If the observed period change reflects an angular
momentum loss, the average loss rate is consistent with the loss rates (via
magnetic stellar wind braking) used in standard models of close binary
evolution, which were derived from observations of much more massive cool
stars. Observations of low-mass stars such as NN Ser's secondary predict rates
of ~100 times lower than we observe. We show that magnetic activity-driven
changes in the quadrupole moment of the secondary star (Applegate, 1992) fail
to explain the period change by an order of magnitude on energetic grounds, but
that a light travel time effect caused by the presence of a third body in a
long (~ decades) orbit around the binary could account for the observed changes
in the timings of NN Ser's mid-eclipses. We conclude that we have either
observed a genuine angular momentum loss for NN Ser, in which case our
observations pose serious difficulties for the theory of close binary
evolution, or we have detected a previously unseen low-mass companion to the
binary.Comment: 10 pages, 6 figures. Accepted for publication in MNRA
Integrated and Modular Didactic and Methodological Concept for a Learning Factory
AbstractAs today manufacturing is not only subject to a single factory, but a network of globally distributed production sites, the goal-oriented encouragement of professional capacities is the motivation for the Learning Factory on Global Production (LGP). In this context, the design of a competency-based and action-oriented didactic and methodological concept is a prerequisite for sustainable learning results and for the development of self-determined problem solving skills. The presented paper gives an overview to the didactic and methodological design approach of the LGP. The integrated modular concept of e-learning and application in the learning factory environment supports self-directed learning and implemented by structuring the teaching/ learning process according to the model of complete action
Augmented Go & See: An approach for improved bottleneck identification in production lines
Bottlenecks in production lines are often shifting and thus hard to identify. They lead to decreased output, longer throughput times and higher work in progress. Go & See is a well-established Lean practice where managers go to the shop floor to see the problems first hand. Mixed reality is a promising technology to improve transparency in complex production environments. Until recently, mixed reality applications have been very demanding in terms of computing power requiring high performance hardware. This paper presents an approach for real-time KPI visualization using mixed reality for bottleneck identification in production lines relying on the bring-your-own device principle. The developed application uses image recognition to identify work stations and visualizes cycle times and work in progress in augmented reality. With this additional information, it is possible to discern different root causes for bottlenecks, for example systematically higher or varying cycle times due to breakdowns. This solution can be classified according to the acatech industry 4.0 maturity model as a level 3 - transparency - application. It could be shown that the identification of bottlenecks and underlying reasons has been improved compared to standard Go & See
Precise mass and radius values for the white dwarf and low mass M dwarf in the pre-cataclysmic binary NN Serpentis
We derive precise system parameters for the pre-cataclysmic binary, NN Ser.
From light curve fitting we find an orbital inclination of i = 89.6 +/- 0.2
deg. From the HeII absorption line we find K_{WD}= 62.3 +/- 1.9 km/s. The
irradiation-induced emission lines from the surface of the secondary star give
a range of observed radial velocities. The corrected values give a radial
velocity of K_{sec}= 301 +/- 3 km/s, with an error dominated by the systematic
effects of the model. This leads to a binary separation of a = 0.934 +/- 0.009
R_{sun}, radii of R_{WD} = 0.0211 +/- 0.0002 R_{sun} and R_{sec} = 0.149 +/-
0.002 R_{sun} and masses of M_{WD} = 0.535 +/- 0.012 M_{sun} and M_{sec} =
0.111 +/- 0.004 M_{sun}. The masses and radii of both components of NN Ser were
measured independently of any mass-radius relation. For the white dwarf, the
measured mass, radius and temperature show excellent agreement with a `thick'
hydrogen layer of fractional mass M_{H}/{M}_{WD} = 10^{-4}. The measured radius
of the secondary star is 10% larger than predicted by models, however,
correcting for irradiation accounts for most of this inconsistency, hence the
secondary star in NN Ser is one of the first precisely measured very low mass
objects to show good agreement with models. ULTRACAM r', i' and z' photometry
taken during the primary eclipse determines the colours of the secondary star
as (r'-i')_{sec}= 1.4 +/- 0.1 and (i'-z')_{sec} = 0.8 +/- 0.1 which corresponds
to a spectral type of M4 +/- 0.5. This is consistent with the derived mass,
demonstrating that there is no detectable heating of the unirradiated face,
despite intercepting radiative energy from the white dwarf which exceeds its
own luminosity by over a factor of 20.Comment: 20 pages, 17 figures, 8 tables, minor changes, accepted for
publication in MNRA
- …