1,025 research outputs found
Photodetachment of cold OH- in a multipole ion trap
The absolute photodetachment cross section of OH- anions at a rotational and
translational temperature of 170K is determined by measuring the
detachment-induced decay rate of the anions in a multipole radio-frequency ion
trap. In comparison with previous results, the obtained cross section shows the
importance of the initial rotational state distribution. Using a tomography
scan of the photodetachment laser through the trapped ion cloud, the derived
cross section is model-independent and thus features a small systematic
uncertainty. The tomography also yields the column density of the OH- anions in
the 22-pole ion trap in good agreement with the expected trapping potential of
a large field free region bound by steep potential walls.Comment: Phys. Rev. Lett., in pres
Non-Destructive Identification of Cold and Extremely Localized Single Molecular Ions
A simple and non-destructive method for identification of a single molecular
ion sympathetically cooled by a single laser cooled atomic ion in a linear Paul
trap is demonstrated. The technique is based on a precise determination of the
molecular ion mass through a measurement of the eigenfrequency of a common
motional mode of the two ions. The demonstrated mass resolution is sufficiently
high that a particular molecular ion species can be distinguished from other
equally charged atomic or molecular ions having the same total number of
nucleons
Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics
The atmospheric greenhouse effect, an idea that many authors trace back to
the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896),
and which is still supported in global climatology, essentially describes a
fictitious mechanism, in which a planetary atmosphere acts as a heat pump
driven by an environment that is radiatively interacting with but radiatively
equilibrated to the atmospheric system. According to the second law of
thermodynamics such a planetary machine can never exist. Nevertheless, in
almost all texts of global climatology and in a widespread secondary literature
it is taken for granted that such mechanism is real and stands on a firm
scientific foundation. In this paper the popular conjecture is analyzed and the
underlying physical principles are clarified. By showing that (a) there are no
common physical laws between the warming phenomenon in glass houses and the
fictitious atmospheric greenhouse effects, (b) there are no calculations to
determine an average surface temperature of a planet, (c) the frequently
mentioned difference of 33 degrees Celsius is a meaningless number calculated
wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the
assumption of a radiative balance is unphysical, (f) thermal conductivity and
friction must not be set to zero, the atmospheric greenhouse conjecture is
falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected
How can a 22-pole ion trap exhibit 10 local minima in the effective potential?
The column density distribution of trapped OH ions in a 22-pole ion trap
is measured for different trap parameters. The density is obtained from
position-dependent photodetachment rate measurements. Overall, agreement is
found with the effective potential of an ideal 22-pole. However, in addition we
observe 10 distinct minima in the trapping potential, which indicate a breaking
of the 22-fold symmetry. Numerical simulations show that a displacement of a
subset of the radiofrequency electrodes can serve as an explanation for this
symmetry breaking
Illusory Decoherence
If a quantum experiment includes random processes, then the results of
repeated measurements can appear consistent with irreversible decoherence even
if the system's evolution prior to measurement was reversible and unitary. Two
thought experiments are constructed as examples.Comment: 10 pages, 3 figure
Blackbody-radiation-assisted molecular laser cooling
The translational motion of molecular ions can be effectively cooled
sympathetically to temperatures below 100 mK in ion traps through Coulomb
interactions with laser-cooled atomic ions. The distribution of internal
rovibrational states, however, gets in thermal equilibrium with the typically
much higher temperature of the environment within tens of seconds. We consider
a concept for rotational cooling of such internally hot, but translationally
cold heteronuclear diatomic molecular ions. The scheme relies on a combination
of optical pumping from a few specific rotational levels into a ``dark state''
with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure
Interstellar deuterated ammonia: From NH3 to ND3
We use spectra and maps of NH2D, ND2H, and ND3, obtained with the CSO, IRAM
30m and Arecibo telescopes, to study deuteration processes in dense cores. The
data include the first detection of the hyperfine structure of ND2H. The
emission of ND2H and ND3 does not seem to peak at the positions of the embedded
protostars, but instead at offset positions, where outflow interactions may
occur. A constant ammonia fractionation ratio in star-forming regions is
generally assumed to be consistent with an origin on dust grains. However, in
the pre-stellar cores studied here, the fractionation varies significantly when
going from NH3 to ND3. We present a steady state model of the gas-phase
chemistry for these sources, which includes passive depletion onto dust grains
and multiply saturated deuterated species up to five deuterium atoms (e.g.
CD5+). The observed column density ratios of all four ammonia isotopologues are
reproduced within a factor of 3 for a gas temperature of 10 K. We also predict
that deuterium fractionation remains significant at temperatures up to 20 K. ND
and NHD, which have rotational transitions in the submillimeter domain are
predicted to be abundant.Comment: 14 pages, 12 figures, 12 table
A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams
An ion beam cooler and buncher has been developed for the manipulation of
radioactive ion beams. The gas-filled linear radiofrequency ion trap system is
installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its
purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high
efficiency and to convert it into low-energy low-emittance ion pulses. The
efficiency was found to exceed 10% in agreement with simulations. A more than
10-fold reduction of the ISOLDE beam emittance can be achieved. The system has
been used successfully for first on-line experiments. Its principle, setup and
performance will be discussed
Detection of 6 K gas in Ophiuchus D
Cold cores in interstellar molecular clouds represent the very first phase in
star formation. The physical conditions of these objects are studied in order
to understand how molecular clouds evolve and how stellar masses are
determined. The purpose of this study is to probe conditions in the dense,
starless clump Ophichus D (Oph D). The ground-state (1(10)-1(11)) rotational
transition of ortho-H2D+ was observed with APEX towards the density peak of Oph
D. The width of the H2D+ line indicates that the kinetic temperature in the
core is about 6 K. So far, this is the most direct evidence of such cold gas in
molecular clouds. The observed H2D+ spectrum can be reproduced with a
hydrostatic model with the temperature increasing from about 6 K in the centre
to almost 10 K at the surface. The model is unstable against any increase in
the external pressure, and the core is likely to form a low-mass star. The
results suggest that an equilibrium configuration is a feasible intermediate
stage of star formation even if the larger scale structure of the cloud is
thought to be determined by turbulent fragmentation. In comparison with the
isothermal case, the inward decrease in the temperature makes smaller, i.e.
less massive, cores susceptible to externally triggered collapse.Comment: 7 pages, 5 figures, accepted for Astronomy and Astrophysic
- …
