2,800 research outputs found

    Critical decay index at the onset of solar eruptions

    Get PDF
    Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius RR undergoes an eruption when its axis reaches a location where the decay index −d(ln⁡Bex)/d(ln⁡R)-d(\ln B_{ex})/d(\ln R) of the ambient magnetic field BexB_{ex} is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope's internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric evolution of the active region or by the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a `critical range' [1.3−1.5] [1.3-1.5], rather than a `critical value' for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.Comment: 15 pages, 9 figures. To appear in The Astrophysical Journa

    Quantum computation with optical coherent states

    Get PDF
    We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements and "small" coherent superposition resource states

    Improving the entanglement transfer from continuous variable systems to localized qubits using non Gaussian states

    Full text link
    We investigate the entanglement transfer from a bipartite continuous-variable (CV) system to a pair of localized qubits assuming that each CV mode couples to one qubit via the off-resonance Jaynes-Cummings interaction with different interaction times for the two subsystems. First, we consider the case of the CV system prepared in a Bell-like superposition and investigate the conditions for maximum entanglement transfer. Then we analyze the general case of two-mode CV states that can be represented by a Schmidt decomposition in the Fock number basis. This class includes both Gaussian and non Gaussian CV states, as for example twin-beam (TWB) and pair-coherent (TMC, also known as two-mode-coher ent) states respectively. Under resonance conditions, equal interaction times for both qubits and different initial preparations, we find that the entanglement transfer is more efficient for TMC than for TWB states. In the perspective of applications such as in cavity QED or with superconducting qubits, we analyze in details the effects of off-resonance interactions (detuning) and different interaction times for the two qubits, and discuss conditions to preserve the entanglement transfer.Comment: revised version, 11 pages, 7 figures (few of them low-res

    Reactions of azoalkenes derived from hydrazones of ethyl bromopyruvate with electron rich alkenes and heterocycles

    Get PDF
    Three hydrazones of ethyl bromopyruvate, the dinitrophenylhydrazone 2a, the toluene-4-sulphonylhydrazone 2b and the t-butoxycarbonylhydrazone 2c, have been reacted with a series of nucleophilic alkenes and heterocycles in the presence of sodium carbonate. Azoalkenes 3 are presumed as intermediates and adducts have been isolated. The azoalkenes derived from hydrazones 2a and 2c are found to be useful electrophiles and electrophilic dienes

    The Influence of Spatial Resolution on Nonlinear Force-Free Modeling

    Full text link
    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/SOT-SP scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.Comment: Accepted to ApJ; comments/corrections to this article are welcome via e-mail, even after publicatio

    Outdoor learning spaces: the case of forest school

    Get PDF
    © 2017 The Author. Area published by John Wiley & Sons Ltd on behalf of Royal Geographical Society (with the Institute of British Geographers). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.This paper contributes to the growing body of research concerning use of outdoor spaces by educators, and the increased use of informal and outdoor learning spaces when teaching primary school children. The research takes the example of forest school, a form of regular and repeated outdoor learning increasingly common in primary schools. This research focuses on how the learning space at forest school shapes the experience of children and forest school leaders as they engage in learning outside the classroom. The learning space is considered as a physical space, and also in a more metaphorical way as a space where different behaviours are permitted, and a space set apart from the national curriculum. Through semi-structured interviews with members of the community of practice of forest school leaders, the paper seeks to determine the significance of being outdoors on the forest school experience. How does this learning space differ from the classroom environment? What aspects of the forest school learning space support pupils’ experiences? How does the outdoor learning space affect teaching, and the dynamics of learning while at forest school? The research shows that the outdoor space provides new opportunities for children and teachers to interact and learn, and revealed how forest school leaders and children co-create a learning environment in which the boundaries between classroom and outdoor learning, teacher and pupil, are renegotiated to stimulate teaching and learning. Forest school practitioners see forest school as a separate learning space that is removed from the physical constraints of the classroom and pedagogical constraints of the national curriculum to provide a more flexible and responsive learning environment.Peer reviewe

    Quantum information processing with Schrodinger cats

    Get PDF
    Quantum optics has proved a fertile field for experimental tests of quantum information science, from experimental verification of the violation of the Bell inequalities to quantum teleportation. However it was long believed that quantum optics would not provide a practical path to efficient and scaleable quantum computation, and most current efforts to achieve a scaleable quantum computer have focussed on solid state implementations. This orthodoxy was challenged recently when Knill et al. showed that given single photon sources and single photon detectors, linear optics alone would suffice to implement efficient quantum computation. While this result is surprising, the complexity of the optical networks required is daunting. In this talk we propose an efficient scheme which is elegant in its simplicity. We indicate how fundamental single and two qubit gates can be achieved. By encoding the quantum information in multi-photon coherent states, rather than single photon states, simple optical manipulations acquire unexpected power. As an application of this new information processing ability we investigate a class of high precision measurements. We show how superpositions of coherent states allow displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single mode superposition states with the same mean photon number

    A study protocol to assess the feasibility of conducting an evaluation trial of the ADVANCE integrated intervention to address both substance use and intimate partner abuse perpetration to men in substance use treatment.

    Get PDF
    Strong evidence exists that substance use is a contributory risk factor for intimate partner abuse (IPA) perpetration. Men in substance use treatment are more likely to perpetrate IPA than men from the general population. Despite this, referral pathways are lacking for this group. This trial will assess the feasibility of conducting an evaluation trial of a tailored integrated intervention to address substance use and IPA perpetration to men in substance use treatment. ADVANCE is a multicentre, parallel-group individually randomised controlled feasibility trial, with a nested formative evaluation, comparing an integrated intervention to reduce IPA + substance use treatment as usual (TAU) to TAU only. One hundred and eight men who have perpetrated IPA in the past 12 months from community substance use treatment in London, the West Midlands, and the South West will be recruited. ADVANCE is a manualised intervention comprising 2-4 individual sessions (2 compulsory) with a keyworker to set goals, develop a personal safety plan and increase motivation and readiness, followed by a 12-session weekly group intervention delivered in substance use services. Men will be randomly allocated (ratio 1:1) to receive the ADVANCE intervention + TAU or TAU only. Men's female (ex) partners will be invited to provide outcome data and offered support from integrated safety services (ISS). Regular case management meetings between substance use and ISS will manage risk. Outcome measures will be obtained at the end of the intervention (approximately 4 months post-randomisation) for all male and female participants. The main objective of this feasibility trial is to estimate parameters required for planning a definitive trial including rates of consent, recruitment, and follow-up by site and group allocation. Nested formative evaluation including focus groups and in-depth interviews will explore the intervention's acceptability to participants, group facilitators, keyworkers and ISS workers. Secondary outcomes include substance use, IPA, mental health, self-management, health and social care service use, criminal justice contacts, and quality of life. Findings from this feasibility trial will inform the design of a multicentre randomised controlled trial evaluating the efficacy and cost-effectiveness of the ADVANCE intervention for reducing IPA and improving the well-being of female (ex)partners
    • 

    corecore