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I. INTRODUCTION

Quantum optics has proved a fertile field for exper-
imental tests of quantum information science. How-
ever, quantum optics was not thought to provide a prac-
tical path to efficient and scalable quantum computa-
tion. This orthodoxy was challenged when Knill et al.[1]
showed that, given single photon sources and single pho-
ton detectors, linear optics alone would suffice to imple-
ment efficient quantum computation. While this result
is surprising, the complexity of the optical networks re-
quired is daunting.

More recently it has become clear that other, quite
different versions of this paradigm are possible. In par-
ticular, by encoding the quantum information in multi-
photon coherent states, rather than single photon states,
an efficient scheme which is elegant in its simplicity has
been proposed [2]. The required resource, which may
be produced non-deterministically, is a superposition of
coherent states. Given this, the scheme is deterministic
and requires only relatively simple linear optical networks
and photon counting. Unfortunately the amplitude of the
required resource states is prohibitively large. Here we
build on this idea and show that with only a moderate
increase in complexity a scheme based on much smaller
superposition states is possible.

The idea of encoding quantum information on con-
tinuous variables of multi-photon fields [3] has led to a
number of proposals for realizing quantum computation
in this way [4, 5, 6]. One drawback of these proposals
is that “hard”, non-linear interactions are required “in-
line” of the computation. These would be very difficult
to implement in practice. In contrast, this proposal re-
quires only “easy’, linear in-line interactions. The hard
interactions are only required for “off-line” production of
resource states. A related proposal is that of Gottesman
et al [7] in which superpositions of squeezed states are
used to encode the qubits. In that proposal the hard in-
teractions are only used for the initial state preparation.
However, quadratic, squeezing type interactions, are re-

quired in-line along with linear interactions.
This paper is laid out in the following way. We start

by describing the basic principles of the scheme. In sec-
tions III and IV we describe realistic measurement and re-
source production techniques respectively, based on pho-
ton counting and linear optics. In section V we consider
error correction and we conclude in Section VI.

II. BASIC SCHEME

The output of a single mode, stabilized laser can be
described by a coherent state, |α〉, where α is a com-
plex number which determines the average field ampli-
tude. Coherent states are defined by unitary transfor-
mation of the vacuum [8], |α〉 = D(α)|0〉, where D(α) is
the displacement operator. Let us consider an encoding
of logical qubits in coherent states with |0〉L ≡ | − α〉
and |1〉L ≡ |α〉, where we take α to be real [9]. These
qubits are not exactly orthogonal, but the approximation
of orthogonality is good for α even moderately large as

|〈α| − α〉|2 = e−4α2

. We will assume for most of this
paper that α ≥ 2, which gives |〈α| − α〉|2 ≤ 1.1 × 10−7.
Measurement of the qubit values can be achieved with
high efficiency by homodyne detection with respect to a
local oscillator phase reference.

Of course, if one wished, an exactly orthogonal qubit
code can easily be defined in terms of the orthogonal

parity eigenstates, |̃0〉L = |α〉+|−α〉 , |̃1〉L = |α〉−|−α〉.
However such states are only a single (nonunitary) qubit
gate away from the code we propose to use. The issue
is not so much the orthogonality of the qubit code, but
rather the need to work outside the qubit space during
qubit processing. As we shall now show, this can be done
with negligible error.

Bit-flip Gate. The logical value of a qubit can be
flipped by delaying it with respect to the local oscillator
by half a cycle. Thus the X or “bit-flip” gate is given by

X = exp{iπâ†â} (1)

This is a unitary gate. As already noted, the Hadamard
gate (or its equivalents) which effects transformation
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from |x〉L to |̃x〉L cannot be unitary. This is because the

logical basis states are not orthogonal but the states |̃x〉L
are parity eigenstates which are orthogonal. For this rea-
son we now consider nonunitary gates based on projective
measurement. Gates based on projective measurements
will be probabilistic in their operation.

Sign-flip Gate. A bit flip in the superposition ba-
sis, ie a “sign flip” or Z gate, can be achieved via tele-
portation [10] as follows. A resource of coherent super-
position states (commonly referred to as “cat” states),

1/
√

2(| −
√

2 α〉 + |
√

2 α〉), is required. Splitting such a
cat state on a 50:50 beamsplitter produces the entangled
Bell state, 1/

√
2(| − α,−α〉 + |α, α〉). A Bell basis mea-

surement is then made on the qubit state, µ|−α〉+ ν|α〉,
and one half of the entangled state (where µ and ν are
arbitrary complex numbers). Depending on which of the
four possible outcomes are found the other half of the
Bell state is projected into one of the following four states
with equal probability:

µ| − α〉 + ν|α〉
µ| − α〉 − ν|α〉
µ|α〉 + ν| − α〉
µ|α〉 − ν| − α〉 (2)

The bit flip errors in results three and four can be cor-
rected using the X gate. After X correction the gate
has two possible outcomes: either the identity has been
applied, in which case we repeat the process, or else the
required transformation

Z(µ| − α〉 + ν|α〉) = µ| − α〉 − ν|α〉 (3)

has been implemented. On average this will take two
attempts. We write

Z = T p
X (4)

meaning the teleportation transformation, T , with bit-
flip correction, X , is applied p times, where p is outcome
dependent.

Our remaining gates implement operations which may
conveniently be described by the product operator nota-
tion

R(Ki ⊗Kj, θ) = e−i θ
2
Ki⊗Kj (5)

= cos(θ/2)I ⊗ I − i sin(θ/2)Ki ⊗Kj (6)

where Ki,j can take on the values, X , Y , Z or I (the
Pauli sigma operators and the identity). For single qubit
operations we will drop the redundant identity (I) oper-
ation on the second qubit.

Phase Rotation Gate. Consider an arbitrary sin-
gle qubit rotation about Z, R(Z, θ). This can be im-
plemented by shifting our qubit a small distance out of
the computational basis and then using teleportation to
project back. We begin by displacing our arbitrary input
qubit by a small amount in the imaginary direction (see
Fig.1(a))

(a)

B
D
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2α2

)
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|B00〉

|Q〉

(b)
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B

B

D
(
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)
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|B00〉

|B00〉

|Q〉

FIG. 1: Schematics of implementing the R(Z, θ) gate. (a) The
bare gate; its operation is near deterministic for a sufficiently
small value of θ/α. Repeated application of this gate can build
up a finite rotation with high probability. (b) The teleported
gate; its operation is deterministic, however it may need to be
applied several times in order to achieve the correct rotation.
Determinism is achieved by preparing the entangled resource
“offline” and only applying the gate to the qubit when the
resource is available. In the diagrams, B represents a cat-Bell
measurement.

D

(
iθ

2α2

)
(µ| − α〉 + ν|α〉) =

µ| − α

(
1 − iθ

2α2

)
〉 + ν|α

(
1 +

iθ

2α2

)
〉 (7)

Now consider the effect of teleporting this state. Using
the relationship [8]

〈τ |α〉 = exp[−1/2(|τ |2 + |α|2) + τ∗α] (8)

we find the required projections are approximately given
by

〈±α| ± α

(
1 ± iθ

2α2

)
〉 = e±iθ/2e−

θ2

8α2

〈∓α| ± α

(
1 ± iθ

2α2

)
〉 = 0 (9)

where we have assumed orthogonality and that θ2

8α2 <<
1. The outcome of the sequence of displacement followed
by teleportation is then found to be

TXD

(
iθ

2α2

)
(µ| − α〉 + ν|α〉) =

e−
θ2

8α2 (e−iθ/2µ| − α〉 ± eiθ/2ν|α〉) (10)

The “±” sign depends on the Bell state measurement
outcome and can be corrected by the Z gate. The trans-
formation is then R(Z, θ).

Notice however, that the output state in Eq.10 is un-
normalized. This reflects the fact that, because we are
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projecting back onto the qubit basis from outside, the
probability of success is not unity. In other words there

is a probability, P = 1 − e
−θ2

4α2 , that the Bell state mea-
surement will return a null result, in which case the gate
will fail. In order to make the probability of failure as
small as possible we require θ2 << 4α2. One option
would be to let α be large [2]. In this way θ can be a
significant angle whilst P ≈ 1 is still satisfied. However,
this is undesirable because of the difficulty in producing
cat states with large α.

A second option is to implement the gate with an incre-
mental phase shift, repeatedly, to build up a significant
angle. Let θ = nφ, then after n rotations by φ we have

(TXD(
iφ

2α2
))n(µ| − α〉 + ν|α〉) =

e−
nφ2

8α2 (e−inφ/2µ| − α〉 ± einφ/2ν|α〉) (11)

The transformation is again R(Z, θ). The success proba-

bility is P = e
−θ2

4nα2 , which can be made arbitrarily close to
one for small α simply by choosing n sufficiently large.
For example with α = 2, θ = π/4 and n = 8 we find
P = 0.995. (or n = 30 gives P = .999). This is basically
an application of the quantum Zeno effect [11].

A third option is to use the technique of gate telepor-
tation [12]. In this case we place the gate inside a sec-
ond teleporter as shown schematically in Fig.1(b). The
R(Z, θ) gate of Eq.10 is implemented on one arm of a sec-
ond Bell-cat state. If (and only if) the gate is successful,
a Bell measurement is made between the qubit and the
other arm of the entangled state. It is straightforward to
show that the output state after X and Z correction is

e∓iθ/2µ| − α〉 + e±iθ/2ν|α〉 (12)

The signs in the arguments of the exponentials depend
on the Bell state measurement results. The qubit is
teleported with an equal probability of either R(Z, θ)
or R(Z,−θ) applied. The operation is deterministic for
the qubit as the second teleportation is only carried
through if the first one is successful. In general the result
R(Z,−θ) can be corrected by applying the gate again,
but this time attempting to apply R(Z, 2θ). If this again
fails the the process is continued by attempting to apply
R(Z, 4θ) etc. Symmetry can be exploited for certain an-
gles. For example for the “phase” gate, R(Z, π/2), only
X and Z corrections are necessary.

Controlled Phase Gate. A non-trivial 2-qubit gate,
R(Z⊗Z,−φ), can be implemented in a similar way to the
single qubit rotation (see Fig.2(a)). Consider the beam-
splitter interaction given by the unitary transformation

Uab = exp[i
θ

2
(ab† + a†b)] (13)

where a and b are the annihilation operators correspond-
ing to two coherent state qubits |γ〉a and |β〉b, with γ

and β taking values of −α or α. It is well known that
the output state produced by such an interaction is

Uab|γ〉a|β〉b = | cos
θ

2
γ + i sin

θ

2
β〉a| cos

θ

2
β + i sin

θ

2
γ〉b(14)

where cos2 θ
2 (sin2 θ

2 ) is the reflectivity (transmissivity)
of the beamsplitter. If both output beams are now pro-
jected using teleportation as for the single qubit gate we
find for an arbitrary input state

TXaTXbUab(ν| − α〉a| − α〉b + µ|α〉a| − α〉b+
τ | − α〉a|α〉b + γ|α〉a|α〉b)

= e−θ2α2/4(eiθα2

ν|−α〉a|−α〉b ± e−iθα2

µ|α〉a|−α〉b±
e−iθα2

τ | − α〉a|α〉b + eiθα2

γ|α〉a|α〉b (15)

where as before we have assumed orthogonality and that
θ2α2 << 1 and the ± signs depend on the outcome of the
Bell measurements. If we choose φ = 2θα2 = π/2 then
R(Z ⊗ Z,−π/2) is implemented, a gate that can easily
be shown to be locally equivalent to a CNOT.

Once again the probability of success is non-unit and
two options are possible for small α: repeated iterations
of the gate for an incremental value of φ can be used to
build up to a total angle of π/2 with a high probability of
success via the quantum zeno effect or; we can use gate
teleportation to guarantee success. To achieve the second
gate teleportation we must now nest the two qubit gate
inside two teleporters as shown schematically in Fig.2(b).
Only X and Z corrections are required.

Superposition Gate. To complete our set of gates
we now describe how to implement a rotation of π/2
about X , ie R(X,π/2). This gate takes computational
basis qubits into the diagonal, or superposition, basis and
is locally equivalent to a Hadamard gate. The gate is
shown schematically in Fig.3(a). It is similar to the Z
rotation except now the displacement followed by Bell
state measurement on the qubit and one of the Bell state
modes is replaced by the beamsplitter interaction used in
the R(Z ⊗Z,−π/2) gate, followed by single (as opposed
to Bell-) cat measurements on the output modes from
the beamsplitter. The interaction produces the following
output state from an arbitrary input

CaCbUBS(µ| − α〉 + ν|α〉) =

e−θ2α2/4{(eiθα2

µ± e−iθα2

ν)| − α〉
+ (±e−iθα2

µ± eiθα2

ν)|α〉} (16)

where Ca and Cb represent the cat state projections. The
± signs depend on the outcome of the cat state measure-
ments. Using X and Z gates we can correct all the ±’s to
+’s. Choosing 2θα2 = π/2 then implements R(X,π/2).
As before the gate is probabilistic for small α, working

with a probability of e−θ2α2/2. To achieve near deter-
minism using the quantum zeno effect one would replace
the beamsplitter interaction (within the dashed box of
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(a)

B
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B

X Z
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δ

|Q1〉

|Q2〉

(b)
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B

B

X Z

|B00〉|B00〉

|Q1〉

B

B

X Z

|B00〉|B00〉

|Q2〉

δ

FIG. 2: Schematics of implementing the R(Z⊗Z,−π/2) gate.
(a) The bare gate; its operation is near deterministic for a
sufficiently small value of θ2α2 where the refectivity of the
beamsplitter is δ = cos2 θ

2
. Repeated application of this gate

can build up to a π/2 rotation with high probability. (b) The
teleported gate; its operation is deterministic. Determinism
is achieved by preparing the entangled resource “offline” and
only applying the gate to the qubits when the resource is avail-
able. In the diagrams, B represents a cat-Bell measurement.

Fig.3(a)) with the R(Z ⊗ Z,−φ) gate of Fig.2(a), iter-
ated sufficient times to give φ = π/2 with high proba-
bility of success. The rest of gate remains the same and
will work deterministically. As before we can also imple-
ment the gate deterministically using gate teleportation
as depicted in Fig.3(b). Only X and Z corrections are
required.

The gatesR(Z, θ), R(X,π/2) andR(Z⊗Z,−π/2) form
a universal set. An arbitrary single qubit rotation can be
constructed from R(Z,ψ)R(X,π/2)R(Z, φ)R(X,−π/2)
and as commented before R(Z⊗Z,−π/2) is locally equiv-
alent to a CNOT. This completes our basic discussion.
In the next section we consider how the required cat and
Bell state measurements can be performed.

(a)

δ

C

C

X Z

|B00〉

|Q〉

(b)

offline

δ

B

C

C

X Z

|B00〉

|B00〉

|Q〉

FIG. 3: Schematics of implementing the R(X, π/2) gate. (a)
The bare gate; its operation is near deterministic for a suffi-
ciently small value of θ2α2. Replacement of the dashed sec-
tion with the repeated application of the gate of Fig.2(a) can
build up to a R(X,π/2) rotation with high probability. (b)
The teleported gate; its operation is deterministic. Determin-
ism is achieved by preparing the entangled resource “offline”
and only applying the gate to the qubits when the resource is
available. In the diagrams, B represents a cat-Bell measure-
ment, and C represents a cat measurement.

III. CAT-BASIS MEASUREMENTS

We define a cat basis measurement to be some proce-
dure that projects the state of an optical mode onto one
of the two states 1√

2
(| − α〉 ± |α〉). If our input state con-

sists only of an arbitrary superposition of these 2 states
then cat-basis measurement can be achieved by simply
counting the photons in the mode. An even number
of detected photons indicates measurement of the state
1√
2

(| − α〉 + |α〉), and an odd number of photons indi-

cates measurement of 1√
2

(| − α〉 − |α〉). Of course, this

will require very high quality photon detectors which can
reliably distinguish n from n+ 1 photons when n ∼ α2.

The cat states can also be distinguished to some ex-
tent by homodyne detection looking at the imaginary
quadrature. Cat states display fringes in the imaginary
quadrature which are π/2 out of phase between the plus
and minus cats [13]. Therefore a measurement result that
falls close to a fringe maximum can be identified with one
or other cat with high probability. This technique gives
inconclusive results some of the time (i.e. close to the
fringe crossings) but could prove useful for initial exper-
imental demonstrations.

In order to perform a Bell basis measurement on two
modes (say, modes a and b) containing coherent state
qubits we can employ the following procedure [14] [15].
Allow the two qubits to interfere at a 50:50 beam split-
ter Ba,b = exp

[
π
4

(
−a†b+ ab†

)]
, where a and b are the

annihilation operators for modes a and b. Then use pho-
ton counters to measure the number of photons in each
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mode. We can then identify the four possible results:

1. an even number of photons in mode a and zero
photons in mode b,

2. an odd number of photons in mode a and zero pho-
tons in mode b,

3. zero photons in mode a and an even number of
photons in mode b, or

4. zero photons in mode a and an odd number of pho-
tons in mode b;

corresponding to each of the four Bell-cat states:

1. |B00〉 = 1√
2

(| − α,−α〉 + |α, α〉),

2. |B10〉 = 1√
2

(| − α,−α〉 − |α, α〉),

3. |B01〉 = 1√
2

(| − α, α〉 + |α,−α〉),
or

4. |B11〉 = 1√
2

(| − α, α〉 − |α,−α〉).

Note that there is also a fifth possibility of detecting zero
photons in both modes a and b, which indicates a fail-
ure of the measurement. Fortunately, this occurs with

probability of only ∼ e−α2

. The preceding discussion as-
sumed we were only differentiating between states within
the computational basis. However, the gates discussed
in section II involved moving short distances outside this
basis. Nevertheless we will show in the following that
these types of measurements are sufficient to implement
our gates.

As an example, we will examine the use of this
procedure for the Bell state measurement required
when performing R(Z, θ). In order to perform this
rotation, we must use the displacement D( iθ

2α2 ) on
the qubit |Q〉 in mode a and append the Bell state
1√
2

(| − α,−α〉 + |α, α〉) in modes b and c. When modes

a and b meet in the beam splitter used for the Bell state
measurement, their interference is incomplete and the re-
sulting state is

|QD〉 = D(
iθ

2α2
)|Q〉|B00〉

= µ| −
√

2α+ iδ,−iδ,−α〉+ µ|iδ,
√

2α− iδ, α〉 +

ν|iδ,−
√

2α− iδ,−α〉 + ν|
√

2α+ iδ,−iδ, α〉(17)

where δ = θ
2
√

2α
. Because the qubit in mode a was cor-

rupted by the displacement operator, now it is possible
to detect photons in both modes a and b simultaneously.
We now detect na photons in mode a and nb photons in
mode b, and this measurement leaves mode c in the pure

state given by

〈na|〈nb|QD〉 =
1√
2

exp

(
−α2 − θ2

8α2

)
1√
na!nb!(√

2α
)na+nb

[µ(−1)na+nb(1 − iε)na(iε)nb | − α〉
+ µ(iε)na(1 − iε)nb |α〉

+ ν(−1)nb(iε)na(1 + iε)nb | − α〉
+ ν(−1)nb(1 + iε)na(iε)nb |α〉], (18)

where ε = θ
4α2 , and we have ignored the normalization

factor due to the nonorthogonality of the computational
basis states. This state may need to be corrected with
X or Z operations and properly normalized before we
obtain the final result of the teleportation, which we will
call |Qna,nb

〉. We can see that this state is close to our
goal by examining the limit when ε� 1. In this case we
are almost certain to measure one of na or nb to be zero.
The number of photons in the other mode is given by a
probability distribution which is almost exactly equal to
the Poisson distribution with a mean of 2α2. This leaves
us with the state

≈ µ(1 − inε)| − α〉 + ν(1 + inε)|α〉 (19)

≈ µe−inε| − α〉 + νeinε|α〉 (20)

= R

(
Z,

nθ

2α2

)
(µ| − α〉 + ν|α〉) . (21)

To evaluate the effectiveness of this procedure without
making such severe approximations, we examine |Qna,nb

〉
in Fig. 4, where we calculate the fidelity |〈Qna,nb

|Qgoal〉|2
and the probability to measure na and nb. We use α = 2,
the input qubit |Q〉 = 1√

2
(|−α〉+ |α〉), and a rotation an-

gle of θ = π
2 . These choices for |Q〉 and θ give the worst

case scenario, in which we obtain the lowest fidelity with
|Qgoal〉 = R(Z, θ)|Q〉. Because the Z operation is equiv-
alent to R(Z, π), we can reach any angle by using Z and
R(Z, θ) where θ ≤ π

2 . One can see that |〈Qna,nb
|Qgoal〉|2

is very close to one in the regions where we are most
likely to detect the pair na and nb.

In order to compute the overall fidelity of this opera-
tion, we first construct the mixed state ρ representing the
output of the teleportation operation for all measurement
results

ρ =

∞∑

na=0

∞∑

nb=0

P (na, nb)|Qna,nb
〉〈Qna,nb

|. (22)

The fidelity is then given by

F = 〈Qgoal|ρ|Qgoal〉. (23)

We plot F (α) for θ = π
2 and F (θ) for α = 2 in Fig.

5. We can obtain a fidelity of 0.99 or above for any
desirable angle if we can produce qubits with α = 5.5.
A second strategy would be to limit our operation of
R(Z, θ) to small angles. Larger rotations could be built
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FIG. 4: Here we plot (a) the probability to detect the pair
na and nb when performing the R(Z, π

2
) rotation, and (b)

F = |〈Qna,nb
|Qgoal〉|

2 as a function of na and nb. We use the
worst case input qubit and an α = 2.

from repeated applications of a high fidelity gate. For
example the fidelity for θ = π/16 is F = 0.99880 when
α = 2. Repeating this 8 times implements R(Z, π/2)
with a fidelity of F = 0.998808 = 0.99044. Compare this
with the fidelity of 0.92865 when performing R(Z, π/2)
in a single step.

Yet a third strategy emerges if we are willing to operate
the logic gate in a non-deterministic fashion, in which
the gate sometimes fails and must be repeated with a
new copy of the qubit. Qubits can be protected from
destruction if we use the gate teleportation scheme of
[12] as pictured in Fig. 1 and discussed in the previous
section. We can then simply discard R(Z, θ) attempts for
which the measurements of na and nb yield low values
for the product |〈Qna,nb

|Qgoal〉|2. Suppose we choose a
set S of (na, nb) pairs which are accepted as successful
operations of the logic gate, and PS is the probability to
measure a member S during the teleportation. The total
output of the logic gate (when it succeeds) is then the
mixed state

ρS =
1

PS

∑

(na,nb)∈S

P (na, nb)|Qna,nb
〉〈Qna,nb

|. (24)

We can now operate this logic gate with a fidelity which
is very close to one. Of course, this is limited by the
maximum possible value of |〈Qna,nb

|Qgoal〉|2 (0.999995
for α = 2 and θ = π/2 with the worst case qubit). Sup-
pose we insist on performing R(Z, θ) with a fidelity of
0.99. In Fig. 6 we plot PS as a function of α under this
restriction. This allows us to make estimates of the num-
ber of Bell-cat states required to perform a single R(Z, θ).
In the gate teleportation scheme, each attempt to per-
form R(Z, θ) requires 2 Bell-cat states, so on average we
need 2/PS Bell-cats. Because there is a 50% probability
of performing R(Z,−θ), during the gate teleportation,
we need an additional 2/PS Bell-cats to correct this. Be-
cause Z commutes with R(Z, θ) it is not necessary to
perform Z after each teleportation; instead we can wait
and perform only one Z after all teleportations are com-
plete. This makes a total of 4/PS+1 Bell-cats on average,

or 11.55 for α = 1, or 5.75 for α = 4.
Which of these three strategies, (i) using very large α,

(ii) using only small θ, or (iii) operating the gate prob-
abilistically and using gate teleportation, is ultimately
most efficient is a complicated question that will depend
on the constraints of Bell-cat production and photon
counters. We hope to address this further in future re-
search.

The other gates of the previous section can similarly be
implemented by replacing the projective measurements
with photon counting measurements. In this way we are
able to implement a universal set of quantum gates on the
coherent state qubits via linear optics, photon counting
and cat and Bell-cat state resources. We now examine
how the cat and Bell-cat states may be produced.

IV. THE GENERATION OF SMALL

SCHRÖDINGER CATS STATES

Let us now turn our attention to how small amplitude
Schrödinger cat states required for our universal quantum
computation schemes can be realized using technologies
currently available or likely in the near future. More
specifically how do we generate states of the form

|Ψ±〉 =
1√
N±

[| − α〉 ± |α〉] (25)

where the N± = 2 ± 2e−2|α|2 . As we have seen the am-
plitude of these cat states need not be large (α ≈ 2 is
sufficient). An elegant proposal was made by Dakna
et.al[16] (see also [17]) for generating such states by
means of a conditional measurement on a beam split-
ter. Their scheme is depicted in Fig (7) and works
as follows: A squeezed state of the form |Ψsq〉 =
(
1 − |λ|2

) 1
4

∑
n

√
(2n)!

n!

(
λ
2

)n |2n〉 (with squeezing param-
eter λ) and a vacuum state |0〉 are combined on a vari-
able transmissivity θ beam-splitter. On the second out-
put port from the beam-splitter a definite photon num-
ber measurement, which can be modelled by the POVM
|m〉〈m|, is performed giving a result m. The conditional
state of the remaining output mode is then

|Ψm〉 =
1√
Nm

∑

n

cn,m

(
λ cos2 θ

2

)n+m
2

|n〉 (26)

with cn,m = (n+m)!
(
1 + (−1)

n+m
)
/(
√
n!Γ

(
n+m

2 + 1
)
)

and Nm =
∑

n c
2
n,m

∣∣∣λ cos2 θ
2

∣∣∣
n+m

. The mean photon

number for Eq.26 is

〈n̄〉 =
1

Nm

∑

n

nc2n,m

∣∣∣∣
λ cos2 θ

2

∣∣∣∣
n+m

(27)

Eq.26 can be broken into two cases: the state result-
ing from an even m result and the state from an odd m
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FIG. 5: Here we plot the fidelity of our procedure for performing the R(Z, θ) rotation as a function of α (using θ = π/2) and
as a function of θ (using α = 2). The dots show the fidelity after the teleportation and the curve shows the fidelity before
teleportation. We use the worst case input qubit.
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FIG. 6: Here we plot PS(α) the probability that our imple-
mentation of R(Z, θ) succeeds given that we demand it per-
forms with a fidelity of 0.99. Here again we use θ = π/2
and the worst case qubit. Notice that PS(1) > PS(1.5), con-
trary to what we might expect. This occurs because when
α = 1.5, 2α2 is not an integer, and the maximum possible
|〈Qna,nb

|Qgoal〉|
2 is therefore significantly lower than we can

find in the α = 1 case.
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FIG. 7: Schematic diagram for the generation of a Schrödinger
like cat states by means of a conditional photon number mea-
surement on a beam splitter. A single mode squeezed state
is input into one port of a variable reflectivity beam-splitter
with the other input being a vacuum state. A definite mea-
surement of m photons (with m > 0) on one output port
of the beam-splitter prepares to a good approximation the
required state.

(which will not be considered here). For m even Eq.26
has only even photon numbers and can be written in the

simplified form

|Ψm〉 =
1√
Nm

∑

n

(2n+m)!
(

λ cos2 θ
2

)n+ m
2

(
n+ m

2

)
!
√

(2n)!
|2n〉(28)

For λ cos2 θ small, this expression can be furhter approx-
imated as

|Ψm〉 ≈ |0〉 + λ cos2 θ
1 +m√

2
|2〉 + . . . (29)

Here we observe that as m increases so does the popu-
lation in the |2〉 (and higher) states compared with the
m = 0 situation. Thus for small λ cos2 θ the mean photon
number increases as m increases. As a cautionary note,
we must emphasize that the scheme here requires the de-
tection of an exact number of photons to generate the
approximate single mode cat state. Currently detectors
are not that efficient but good progress is being made.

Here the resulting
Now let us determine how good an approximation

Eq.26 is with the Schrödinger cat states given by Eq.25.
This can be achieved by calculating the overlap F =
|〈Ψ+|Ψm〉|2 between the two states. To this end we plot
in Fig (8) both the mean photon number of the state
of Eq.26 and the fidelity for various even m. It is in-
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FIG. 8: Plot of the fidelity of the state Eq.26 compared with
Eq.25 and mean photon number of Eq.26 versus λ cos2 θ for
i) m=0, ii) m=2, iii) m=4, iv) m=6, and v) m=10.

teresting to observe that a good fidelity (>95%) can be
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achieved for quite a range of λ cos2 θ and m. In fact for
λ cos2 θ ≤ 0.3 the fidelity between the two states we are
comparing exceeds 99%. However to achieve a cat state
with a moderate mean photon number we either need m
large or λ cos2 θ ≥ 0.5. As m increases the overlap be-
tween Eq.25 and Eq.26 for the same mean photon number
increases. There is a potential regime where Eq.26 has
moderate mean photon number and a high overlap with
the state Eq.25. However there is a trade off in that the
initial probability of generating the state Eq.26 with λ
fixed decreases as m increases. The probability of suc-
cessfully generating the state Eq.26 is given by

Pm =

√
1 − λ2

1 − λ2 cos4 θ

[
λ2 sin2 2θ

4 (1 − λ2 cos4 θ)

]m

Int[m/2]∑

l=0

m!

(m− 2l)!l!2(2λ cos2 θ)2l
(30)

and is shown in Fig (9) for various m. As m increases the
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λ = 0.6

FIG. 9: Plot of the probability of generating Eq.26 versus
λ cos2 θ for λ = 0.6 with i) m=2, ii) m=4, iii) m=6, and iv)
m=10.

probability of successfully generating our required state
significantly decreases but the success probability is rea-
sonable for λ = 0.6 with either m = 2 or 4. With such
parameters we can generate a Schrödinger cat like state
with a fidelity greater than 95% with a probability of
success greater than one percent.

Let us now determine if the Dakna cat state can be
used to generate the entangled cat state |α〉|α〉+ |−α〉|−
α〉 required in the teleportation step of the various fun-
damental gates. Such a state can be generated from an
ideal cat state but combining it with the vacuum state on
a 50/50 beamsplitter (here we need to choose the ampli-

tude β of the original single mode cat to be
√

2α. Using
the Dakna state cat as the input to this beamsplitter,
we plot in Figure (10a) the overlap between the result-
ing two mode state and the two mode entangled state
We observe that for both m = 2, 4 we have the fidelity
exceeding ninety five percent for a wide range of parame-
ters. This indicates that to a very good approximation we
can generate the two mode entangled cat state required
for our basic gate operations. Given this entangled re-
source we can now investigate one such gate operation.
We consider the operation of the R(Z, φ) gate illustrated
in Fig (1) using the Dakna cat state to generate both
the entangled resource and the state |Q〉. In Fig (10b)

0.0 0.2 0.4 0.6
0.95

0.96

0.97

0.98

0.99

1.00

λ Cos2θ

F
id

el
it

y

i)

ii)

iii)

a)

0.00 0.15 0.30 0.45
0.90

0.92

0.94

0.96

0.98

1.00

λ Cos2θ

F
id

el
it

y

b)
i)

ii)

iii)

FIG. 10: Plot of the fidelity for the a) dakna two mode cat
state versus |α〉|α〉 + | − α〉| − α〉 and b) the state eiφ|α〉 +
e−iφ| − α〉 resulting from the action of the gate R(Z, φ) with
φ = π/32 versus λ cos2 θ for i) m=0, ii) m=2 and iii) m=4.

we show the fidelity for performing the gate operation
to transform the state |Q〉 to eiφ|α〉 +−iφ | − α〉 for φ
small. This results show the feasibility of performing in
principle experiments to demonstrate quantum logic.

V. ERROR CORRECTION

A viable quantum computation scheme must be ca-
pable of incorporating error correction. We now briefly
discuss the issue of error correction. The major sources
of error in our scheme are expected to be, in order of
increasing significance: (i) errors due to non orthogonal
code states; (ii) errors due to moving outside the qubit
basis; (iii) errors due to random optical phase shifts and;
(iv) photon loss.

Sources (i) and (ii) are equivalent. As discussed in sec-
tion II we could use as orthogonal code states the cat
states. These states are a single qubit gate away from
the coherent state code. Such a gate must be non uni-
tary and we have given a method based on teleportation
to achieve this. Single qubit manipulations in the cat
state basis require us to move outside of the qubit basis
and rely on teleportation to project back into the compu-
tational basis. We have shown that errors introduced in
this process due to non orthogonality of coherent states
are exponentially small in the amplitude and in any case
are heralded by the teleportation process itself. If we see
an error we can repeat the teleportation process which,
as the errors can be made so small, is very likely to suc-
ceed after a couple of trials. We will thus not consider
these sources of error further.

Optical phase shift errors will occur due to timing er-
rors between different qubits and between qubits and the
local oscillator. Such errors may arise from path length
fluctuations in the circuit. These can be monitored and
corrected through classical optical interferometric tech-
niques. Such locking techniques are a mature technology
and can be extremely precise. We will assume sufficient
classical control is exercised to make these errors negligi-
ble.

Photon loss error however is a more serious problem
as it is never heralded and increases quadratically with
α. In this case we must turn to error correction coding
to mitigate the effect. Photons are lost from a coherent
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state at Poisson distributed times at a rate determined by
γ〈a†a〉, where γ is the single photon loss rate. Obviously,
if a photon is lost the system has one less photon. The
effect of photon loss from a pure state is thus given by
|ψ〉 → a|ψ〉, where a is the Bose annihilation operator.

The Poisson distributed nature of photon loss means
that even when no photons are lost from a coherent state,
the state must change. Not seeing a photon emitted up
to time t indicates that the state is increasingly likely not
to contain any photons at all and thus we must contin-
uously adjust our description of the state to reflect this
knowledge.

We can put the description of photon loss on a more
formal basis by asking for the conditional state of the
system given an entire history of photon loss events. This
is a list of times {t1 < t2, < . . . < tn ≤ t}, at which
photons are lost. The (unnormalized) conditional state
is[18]

|ψ(t|t1, t2, . . . , tn)〉 = γn/2e−γ(t−tn)/2ae−γ(tn−tn−1)/2a

. . . ae−γ(t2−t1)/2ae−γt1/2|ψ(0)〉 (31)

The norm of this unconditional state is the probability
for this history.

If we start in the coherent state |α〉 and lose no photons
up to time t, the conditional state is |κα〉 where κ =
e−γt/2. The important fact here is that the state remains
a coherent state even though the amplitude is decreased.
This kind of error takes us out of the code space, but can
be corrected by teleportation. Consider the state

|Ψ〉 = (µ|−κα〉1 + ν|κα〉1)(|α, α〉23 + |−α,−α〉23) (32)

If we mix modes 1, 2 on a beam splitter, and count n 6= 0
photons in mode 1 and 0 photons in mode 2, the condi-
tional state of mode 3 is found to be µ| − α〉 + ν|α〉. If
κ is small enough this will occur with high probability.
In fact letting κ = 1 − ε the probability for this event is
very close to

P (n1 6= 0, n2 = 0) = e−ε2|α|2/2 (33)

the teleportation projects us back into the qubit ba-
sis with high probability as it is most likely that n1

is near 2|α|2. Failure of the protocol is heralded by
n1 = 0, n2 6= 0 and thus the gate can be repeated if
necessary. The dominant term in the failure probability

is approximately given e−2|α|2 . In fact this resetting of
the amplitude happens as a matter of course in all the
teleportation based gates we have discussed. Thus it may
not be necessary to explicitly introduce additional gates
for this purpose.

If a photon is lost from a coherent state, the state is
unchanged up to a phase as a|α〉 = α|α〉, which when nor-
malized produces only a phase shift given by the phase
of α [19]. This means that, in the qubit code space,
photon loss is equivalent to an erroneous application of
the Z gate, which induces a sign flip error. A sign flip

error may be converted into a bit flip error by perform-
ing a Hadamard gate and working in the conjugate basis
|±〉 = |α〉 ± |−α〉, ( that is the cat states). To prepare a
code state to protect sign flip errors, we thus first prepare
the standard three qubit code[20],

|0〉L = | − α,−α,−α〉 ; |1〉L = |α, α, α〉 (34)

and then perform a Hadamard gate on each mode sepa-
rately. Sign flip errors will now appear as bit flip errors
and can be corrected using the standard three qubit cir-
cuit [21].

The encoding is easily done in linear optics by an ex-
tension of the technique previously discussed for produc-
ing Bell entanglement. Two beam splitters suffice to im-
plement the transformation

(µ| − β〉1 + ν|β〉1)|0〉2|0〉3 →

µ|−β√
3
〉1|

−β√
3
〉2|

−β√
3
〉3 + ν| β√

3
〉1|

β√
3
〉2|

β√
3
〉3) (35)

At the first beam splitter, with reflectivity amplitude of
1√
3
, modes 1 and 2 are combined, subsequently modes

2 and 3 are combined at a 50/50 beam splitter. Thus

by choosing β =
√

3α we can immediately prepare the
entangled state µ| − α,−α,−α〉 + ν|α, α, α〉.

Any logical operation may be performed on an arbi-
trary state in the code space

|ψ〉L = µ| − α,−α,−α〉 + ν|α, α, α〉 (36)

by extending the teleportation gates for the single mode
case to the multi mode case. Displacements can easily
be done one mode at a time. The teleportation steps in
the gates will require a six mode entangled resource of
the form

|α, α, α, α, α, α〉 + | − α,−α,−α,−α,−α,−α〉 (37)

Such a state could be prepared by an obvious generaliza-
tion of the method used in Eq.(35), however the ampli-
tude of the initial cat state is becoming uncomfortably
large. We now show how to avoid this problem.

Consider the resource state

| − α,−
√

2α〉 + |α,
√

2α〉 (38)

which can be produced from a cat state of amplitude√
3α by splitting it on a beamsplitter of reflectivity 1/

√
3.

Suppose this state is used as the entanglement in a tele-
portation protocol with the smaller amplitude arm being
mixed with the input state and measured. The result of
the teleportation is the transformation

µ| − α〉 + ν|α〉 → µ| −
√

2α〉 + ν|
√

2α〉 (39)

where we have assumed the necessary bit-flip and sign-
flip corrections have been made. That is, the state is
amplified whilst preserving the superposition. If the am-
plified state is then split on a 50:50 beamsplitter an en-
tangled state of the same amplitude as the original will
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be produced. By repeating this process many times multi
mode encoded states or entangled resource states can be
produced deterministically without the need to produce
“large” cats.

Finally we note that the preceding analysis has ignored
the effect of gate errors due to photon loss. For the phase
rotation gate and the control phase gate (R(Z, θ) and
R(Z ⊗Z,−φ)) the effect of photon loss is similar to that
discussed above for the propagating qubit, that is it pro-
duces sign flips in the computational basis. In reaching
this conclusion we have considered loss events occurring;
to the resource states; at the measurement site and; at
the displacement. Hence errors in these gates can be
corrected by the code discussed above. However pho-
ton loss events in the superposition gate (R(X,π/2)) can
produce bit-flips in the computational basis if they oc-
cur at the measurement site. As a result, protecting a
general circuit will require error correction for both sign
flips and bit flips. This can be achieved by using the stan-
dard nine-qubit code [21] which can be implemented by a
straightforward generalization of the techniques outlined
in the preceding discussion.

It is likely that the application of more efficient codes
[22] and optimization, in particular exploiting the rarity
of bit flip versus sign flip errors in a general circuit, can
reduce the complexity of the required error correcting
codes. We leave an investigation of this and the general
question of fault tolerance levels for future research.

VI. CONCLUSION

In this paper we have presented a quantum computa-
tion scheme based on encoding qubits as coherent states
of equal absolute amplitude but opposite sign. The opti-
cal networks required to manipulate the qubits are con-
ceptually simple and require only linear interactions and
photon counting, provided coherent superposition ancilla

states are available (cat states). We have shown that
qubits with amplitude |α| = 2 and resource cat states of

amplitude |α| =
√

6 would be sufficient. Accurate pho-
ton counting measurements of up to about 10 photons
would also be necessary.

We have discussed how the cat-state resources could
be produced from squeezed sources, linear interactions
and photon counting in a simple scheme. This scheme
appears capable of producing states suitable for proof
of principle experiments. It seems likely though that
more sophisticated schemes would be necessary for scal-
able systems.

The power of the scheme stems from the ability to gen-
erate entangled states and make Bell basis measurements
with simple linear interactions. This means teleportation
protocols of various forms can be implemented determin-
istically to great effect.

A disadvantage of the scheme is that the multi-photon
nature of the qubits make them more susceptible to pho-
ton loss than single photon qubits. However, we have
shown how error correction can be employed in a straight-
forward way to counter this effect.

Being a simple optical system, the decoherence and
control issues are well understood and with sufficient ef-
fort realistic evaluations of the resources and precision
needed can be made. This level of understanding is not
a feature of all quantum computer candidates. As well
as the long term goal of quantum computation, nearer
term applications in quantum communication protocols
appear possible.
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