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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
http://hal.upmc.fr/hal-01328644


CRITICAL DECAY INDEX AT THE ONSET OF SOLAR ERUPTIONS

F. P. Zuccarello, G. Aulanier, and S. A. Gilchrist
LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules

Janssen, F-92195 Meudon, France; Francesco.Zuccarello@obspm.fr, Guillaume.Aulanier@obspm.fr, Stuart.Gilchrist@obspm.fr
Received 2015 July 24; accepted 2015 October 6; published 2015 November 25

ABSTRACT

Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around
an axis. The torus instability model predicts that a magnetic flux rope of major radius R undergoes an eruption
when its axis reaches a location where the decay index -d B d Rln lnex( ) ( ) of the ambient magnetic field Bex is
larger than a critical value. In the current-wire model, the critical value depends on the thickness and
timeevolution of the current channel. We use magnetohydrodynamic simulations to investigate whether the critical
value of the decay index at the onset of the eruption is affected by the magnetic flux rope’s internal current profile
and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region
is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at
the onset of the eruption is not significantly affected by either the pre-erupitve photospheric evolution of the active
region or the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a
“critical range” [1.3–1.5], rather than a “critical value” for the onset of the torus instability. This range is in good
agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the
occurrence of tether-cutting magnetic reconnection.

Key words: instabilities – magnetohydrodynamics (MHD) – methods: numerical –
Sun: coronal mass ejections (CMEs)

1. INTRODUCTION

Solar eruptions are one of the most spectacular and violent
phenomena that occur in the Sun’s atmosphere. Together with
solar flares,they are the most impulsive and energetic
manifestation of solar activity. Energy considerations suggest
that eruptions, as well as the associated coronal mass ejections
(CMEs), are magnetically driven (Forbes et al. 2006).

A significant number of eruptions originate in active regions
where the magnetic field is significantly sheared. Many of these
active regions also host filaments, that is, structures consisting
of plasma that is cooler and denser than its surroundings.

Magnetic flux ropes, i.e., twisted magnetic field lines that
globally wrap around an axial magnetic field, are topological
structures that can host and govern the dynamics of filaments
(Kuperus & Raadu 1974; Démoulin & Priest 1989; Priest
et al. 1989; van Ballegooijen & Martens 1989; Aulanier &
Demoulin 1998; van Ballegooijen 2004; Mackay & van
Ballegooijen 2006; Gunár & Mackay 2015). In addition, they
can also explain the observed sigmoidal/highly sheared
structures of erupting active regions (Canou & Amari 2010;
Jing et al. 2010; Green et al. 2011; Savcheva et al. 2012; Gibb
et al. 2014; Jiang et al. 2014). Structures compatible with
magnetic flux ropes have also been found in solar cavities
(Gibson et al. 2010; Rachmeler et al. 2013).

This evidence suggests that magnetic flux ropes play a
fundamental role in solar eruptions, and explains why virtually
all CME-initiation models have a phase in which a magnetic
flux rope is present (see reviews by Forbes 2010; Chen 2011;
Aulanier 2014; Filippov et al. 2015).

Based on the observation that many filament eruptions are
associated with convergence motions toward the polarity-
inversion line (PIL) of active regions, van Ballegooijen &
Martens (1989) proposed flux cancellation at the PIL as a
possible mechanism for the formation and eruption of magnetic
flux ropes. This eruption scenario has been further investigated

in 2D by Forbes & Isenberg (1991) and Isenberg et al. (1993)
by using an ideal magnetohydrodynamic (MHD) description of
a magnetic flux rope embedded in the field generated by a sub-
photospheric line dipole. In particular, these authors studied the
evolution of the system in the equilibrium manifold when
convergence flows toward the PIL were applied. In response to
this photospheric driver, the magnetic flux rope follows a series
of nearby equilibria that are located at larger and larger heights.
This evolution continues until a critical point is reached. At
this point, no nearby equilibrium is accessible and the system
experiences a catastrophic loss of equilibrium: the magnetic
flux rope suddenly jumps to a new equilibrium at a significantly
larger height, and eventually experiences a full eruption if
magnetic reconnection is allowed (Lin & Forbes 2000).
Another ideal-MHD mechanism for the initiation of CMEs is

the torus instability (Bateman 1978; Kliem & Török 2006). In
this model, a current ring of major radius R is embedded in an
external magnetic field. Owing to the curvature of the current
channel, the ring experiences a radial “hoop force,” which is
directed outwardand decreases in magnitude if the ring
expands. If the inwardly directed Lorentz force due to the
external field decreases faster with R than the hoop force, the
system becomes unstable.
Assuming an external field µ -B R ,n

ex the decay index n is
defined as

= -n
d B

d R

ln

ln
. 1ex ( )

Bateman (1978) and Kliem & Török (2006) showed that this
instability occurs when  =n n 1.5.crit In other words, if the
current ring has a major radius, R, such that the decay index of
the external field, n, is significantly smaller than ncrit, the
system is in a stable equilibrium where the inwardly directed
magnetic tension of the external field balances the outwardly
directed magnetic pressure of the current channel. However, if
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n n ,crit then this equilibrium is unstable and any displace-
ment of the current channel due to some perturbation will
initiate an outward motion of the current ring.

By using a current-wire approach, Démoulin & Aulanier
(2010) have shown that the torus instability is equivalent to a
loss of equilibrium. In fact, the torus instability is the instability
that occurs at the critical point of the equilibrium manifold of
the loss-of-equilibrium model (Kliem et al. 2014).

The exactcritical value of the decay index, ncrit, at which
the loss of equilibrium occurs depends on the morphology of
the current wire. If thin current distributions are considered,
then ncrit = 1 for an infinitely long wire, and ncrit = 1.5 for a
perfectly circular current ring. If relatively thick current
distributions are considered, then the difference between ncrit
for a straight wire and a circular ring is smaller. The current
distributions found in MHD calculations are typically thick: the
radius of the cross section is significant compared to the length
of the current channel. For relatively thick current distributions
the critical decay index lies in the range ncrit = 1.1–1.3 or
ncrit = 1.2–1.5, depending on whether or not the current wire
expands during the perturbation (Démoulin & Aulanier 2010).
Independently of the exact topology of the external field, Kliem
et al. (2014) have found that for a T&D (Titov &
Démoulin 1999) flux rope the instability occurs when the
critical decay index is n 1.4crit . Olmedo & Zhang (2010)
analytically investigated the stability properties of a line-tied
partial torus and found that the critical decay index for the onset
of the instability is in the range of ncrit ≈ 0.5–2, depending on
which fraction of the torus—from half to a full torus—is above
the photosphere.

The aforementioned results are derived using wire models,
that is, the equilibrium properties are determined by solving the
momentum equation in terms of the current distribution. In
recent years, many numerical experiments have been per-
formed to validate the torus instability model using the full set
of MHD equations. Török & Kliem (2005, 2007) performed
numerical MHD simulations of a line-tied T&D flux rope
embedded in different external magnetic field configurations
and found that at the moment of the eruption the decay index at
the apex of the flux rope axis is ncrit ; 1.5. A similar value was
found in a simulation where the magnetic flux rope is
dynamically formed through magnetic reconnection at bald
patches and at hyperbolic flux tubes (Aulanier et al. 2010).
However, flux emergence simulations seem to suggest a higher
value of the critical decay index. For example, Fan & Gibson
(2007) and Fan (2010) have found that the critical decay index
at the onset of the eruption lies in the range ncrit = 1.75–1.9,
while An & Magara (2013) found values for ncrit that are well
above 2. Recently, MHD relaxations of nonlinear force free
(NLFF) equilibria of solar active regions suggest values of the
critical decay index in the range ncrit = 1.5–1.75 (Kliem
et al. 2013; Amari et al. 2014; Inoue et al. 2015).

It is clear that different studies give rise to significantly
different critical values of the decay index for the onset of the
instability. Therefore, it is natural to ask why so many different
values exist.

Many of the basic concepts developed for the torus
instability (such as the decay index) were developed in the
current-wire framework. Applying these concepts directly to
MHD calculations is difficult owing to the differences between
the two approaches. First, there is the problem of identifying
where to evaluate the decay index, n, to compare to the critical

value ncrit. There is no ambiguity in the current-wire models—
the decay index is always computed at the apex of the
infinitesimal current wire. However, an equivalent structure
does not generally exist in an MHD simulation, so it is unclear
where to evaluate Equation (1). A natural choice is to follow
the idealized case and compute n at the axis of the flux rope,
but generally the axis is not welldefined unless the rope is
symmetric. Second, it is difficult to determine which ncrit
should be used. In the current-wire formulation, different
values of ncrit are derived for different prescriptions of the
current profile in the wire. Generally, the current distribution of
an MHD calculation will not match any of the idealized
configurations. Finally, the current-wire approach often does
not include the effect of linetying, which also affects ncrit.
Given these problems, one might expect the two approaches to
predict significantly different values for the onset of the
instability.
However, and even more importantly, different MHD

simulations result in different values of the critical decay
index, raising further questions: What is the role of different
line-tied photospheric drivers? Does the morphology of the
magnetic flux rope also influence the critical value of the decay
index in the MHD treatment? Does the current distribution
within the flux ropes, which differs in different simulations,
affect the critical value of the decay index? Can the different
critical values of the decay index be due to the identification of
the axis of the magnetic flux rope?
In order to address these questions, in the present paperwe

perform a parametric study aimed to determine the value of the
critical decay index at the onset of the loss of equilibrium,
when different classes of photospheric motions—which
resemble the ones typically observed in active regions—are
applied. Starting from an asymmetric, bipolar active region as
in Aulanier et al. (2010), we apply four different classes of
motions, namely, convergence toward the active region’s PIL,
asymmetric stretching, and peripheral and global dispersal of
the active region. We describe how the corona responds to the
different drivers and how these drivers affect the height and
only marginally the critical value ncritof the onset of the torus
instability.
The plan of our paper is as follows. In the following section

we introduce our numerical model, the initial condition, and the
implementation of the boundary conditions. The topological
and energy evolution of the system in response to these flows is
presented in Section 3. Section 4 describes the analysis that we
performed in order to determine the critical value of the decay
index at the onset of the eruptions. Finally, in Section 5 we
discuss our findings and conclude.

2. MODEL SETUP

The dynamics of the formation and evolution of magnetic
flux ropes is modeled by using a new hybrid MPI/OpenMP
parallel version of the Observationally driven High-order
Magnetohydrodynamics code (OHM;Aulanier et al. 2005,
2010). The OHM-MPI code solves the following zero-β
(pressureless), time-dependent MHD equations in Cartesian
coordinates:

r
r x r r

¶
¶

= - + D -u
t

, 20· ( ) ( ) ( )

r r rn
¶
¶

= -  + ´ + ¢
u

u u J B u
t

, 3( · ) ( )

2
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h
¶
¶

=  ´ ´ + D
B

u B B
t

, 4( ) ( )

m ´ =B J, 5( )

where ρ is the mass density (r0 is its initial value at t = 0), u is
the plasma velocity, B is the magnetic field, J is the electric
current density, η is the magnetic resistivity, and μ is the
magnetic permeability of the vacuum. x r rD - 0( ) and n¢ are
artificial diffusion operators for the density and the velocity,
whose presence is necessary to ensure the numerical stability of
the code (see Aulanier et al. 2005, for details). Furthermore, in
the continuity equation an extra “Newton’s term” is added for
Îz 0, 0.7[ ] in order to avoid sharp density variations close to

the bottom boundary.
The calculation is parallelized using a combination of the

OpenMP (Chandra et al. 2001) and the messagepassing
interface (MPI) standards (Gropp et al. 1999). For OHM-MPI,
OpenMP is used to distribute work among cores on individual
nodes, while MPI is used to pass data between nodes. The
computational volume is sliced horizontally (i.e., in x-y plane)
to produce a vertical stack of subvolumes. Each node is
assigned the task of computing the solution in a particular
subvolume (which is itself divided among the cores on the
particular node). At each time step, synchronization and data
transfer between nodes are necessary to compute derivatives
across subvolume boundaries. The parallelization achieves a
significant speed-up for a moderate number of cores
(∼100);however, for large numbers of cores, the calculation
is limited by the finite memory bandwidth in the shared
memory environmentand the communication times in the
distributed memory environment.

The three-dimensional MHD equations are solved on a
nonuniform mesh that covers the physical domain [−10,
10] × [−10, 10] × [0, 30] using 251 × 251 × 231 grid points
with a grid resolution that varies in the range [6 × 10−3,
0.32] × [6 × 10−3, 0.32] × [6 × 10−3, 0.6], and with the
smallest cell centered at x = y = z = 0. Similarly to Aulanier
et al. (2010), the MHD equations are solved in their
dimensionless form.

2.1. Initial Condition

As an initial condition for the magnetic field we consider the
current-free (potential) field generated by two unbalanced
monopoles placed at a distance L = 2 from each other and
located at different depths below the photosphere (z= 0). The
mathematical form of this field is (Aulanier et al. 2010)

å

å

å

= = -

= = -

= = -

= - + - + -

=

-

=

-

=

-

B t C x x r

B t C y y r
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i
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i
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1

2
3

1

2
3

1

2
3

2 2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

where (x1 = 1.025; y1 = 0.3; z1 = −0.9; C1 = 15) and
(x2 = −0.775; y2 = −0.3; z2 = −1.3; C2 = −14). This initial
condition results in an asymmetric active region with a positive
flux excess of about 24%.

The initial density profile is defined as

r = = =t B t0 0 , 72( ) ( ) ( )

resulting in auniform Alfvén speed (cA = 1) everywhere in the
computational domain. This ensures that if the boundary
motions are sub-Alfvénic at the photosphere (z= 0), then they
are sub-Alfvénic everywhere, therefore avoiding the generation
of steep wavefronts at larger heights. The initial velocity field is
=u 0 in the entire computational domain.

2.2. Boundary Conditions

We impose zero-gradient, “open” boundary conditions for
all the MHD variables at all the boundaries except for the
boundary at z = 0, where we impose the so-called line-
tiedboundary conditions, therefore ensuring that the footpoints
of each magnetic field line do not move unless the motions are
explicitly prescribed (Aulanier et al. 2005).
In order to quasi-statically evolve the initial potential

magnetic field into a current-carrying magnetic field, at the
line-tied boundary we impose the following velocity profile:

g=u ut t t , 80( ) ( ) ( ) ( )

y y

y y

=  ´

= -
=
=

^

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

u et u t t

t
B z t

B z t

,

exp
0;

0;
, 9

z

z

z

0 0
max

0

1 min

2

[ ]( ) ( ) ( )

( ) ( )
( )

( )

where y = 3.51 , =u c0.050
max

A, and y t0 ( ) is computed at
every time step to guarantee that the maximum value of u t0 ( ) is
always equal to u ,0

max therefore ensuring the sub-Alfvénic
character of the driving motions. The function

g =
- -

D
+

=

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥t

t t

t

1

2
tanh 2

1

2
10

i

i
i

0

1

( ) ( ) ( )

is used to ensure that the flows are smoothly increased
(decreased) from zero to their steady value (from their steady
value to zero) within a time interval Dt2 centered at t = t0
(t = t1). In what follows, we will only give the time ti as the
time when the flows and/or diffusion are switchedon
(switched off), however implying that this is achieved over a
time interval - D + Dt t t t, .i i[ ]
We choose t0 = 10tA, t1 = 100tA, and Δt = 3tA, that is, the

photospheric motions are applied until t = 100tA, when they
decrease to half of their steady value, and become infinitesimal
after t = 103tA.
By construction these flows are asymmetric vortices centered

around the local maxima of B ,z∣ ∣ with the fastest velocity being
reached close to the PIL and rapidly decreasing when moving
away from it and toward the center of the magnetic field
polarities. As a consequence, these flows induce shear close to
the PIL, without significantly perturbing the magnetic field
anchored around the center of the magnetic polarities.
In order to study the effect of different photospheric flows on

the formation and stability of magnetic flux ropes, starting from
time t = 105tA we impose four different classes of flows
resulting in four different simulations runs: convergence of the
magnetic flux closest to the PIL (“Run C”: convergence),
asymmetric stretching along one direction only (“Run S”:
stretching), and peripheral and global dispersal of the magnetic
field polarities (“Run D1, D2”: dispersal).
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To define these boundary conditions, we use Equation (8)
where γ(t) is given by Equation (10), with t0 = 105tA,
Δt = 3tA, and t1 the time when the eruption becomes
unavoidable. The time t1 is determined through a series
of relaxations runs (see Section 4.1). Finally, ºu t0 ( )
u t u t,x y[ ( ) ( )] is defined as follows:

1. “Run C”:

y y
=

¶

=

⎧⎨⎩u t
u t t u t B t

u t

, if 0
0, otherwise

0 11

x
x x z

y

C 0
max

0

C

( ) ( ) ( ) ( ) · ( )

( ) ( )

2. “Run S”:

y y= ¶

=

u t u t t

u t 0 12
x x

y

S
0
max

0

S

( ) ( ) ( )
( ) ( )

3. “Run D1”:

y y

y y

= ¶

= ¶

u t u t t

u t u t t 13
x x

y y

D1
0
max

0

D1
0
max

0

( ) ( ) ( )
( ) ( ) ( ) ( )

with y t( ), y t0 ( ), y1, u0
max the same as in Equa-

tions (9) and

4. “Run D2”:

y y

y y

= ¶

= ¶

u t u t t

u t u t t 14
x x

y y

D2
0
max

0

D2
0
max

0

( ) ( ) ( )
( ) ( ) ( ) ( )

that is, exactly the same as “Run D1,” but with
y = -0.5.1

The different flow profiles, u t ,0 ( ) at the beginning of the
convergence phase are shown in the left panels of Figure 1. The
effect of these motions on the normal component of the
magnetic field at z = 0 and at the end of the driving phase is
shown in the right panels of Figure 1.

A comparison between the last two rows of Figure 1
illustrates the effect of the parameter y1 in the function y t :( ) it
controls the size of the region (centered around the maximum
of the polarity) that is unaffected by the flows. Finally, all the
applied flows have a component that induces flux convergence
toward the PIL. This is a common features of several CME’s
initiation scenarios, and it is very often observed to precedethe
onset of eruptive flares.

2.3. Diffusive Coefficients

The MHD equations solved by the OHM-MPI code include
an artificial density diffusion coefficient ξ, a pseudo-viscosity ν′,
and a coronal resistivity η. These coefficients are required to
ensure the numerical stability of the code. In addition, at the
lower boundary a photospheric diffusion term hp is also present.

Each of the four simulation runs described in this paper can
be divided into three different phases: (1) the twisting
phase driven by the boundary motions defined by Equation (8)
and applied from t = 0 to t = 100tA (the same for all
the simulations);(2) the convergence phase driven by the
motions defined in Equations (11)–(14) from t = 105tA to
t = t1, i.e., the time when the eruption becomes unavoidable;
and (3) the eruption phase, where we impose = =u z t u0,x y( )

= =z t0, 0,( ) which begins from t = t1untilthe end of the
simulations.
During the twisting and the convergence phases, the coronal

diffusivity is fixed to h = ´ -4.8 10 ,cor
4 the diffusion

coefficient is x h= 1.5 , and the pseudo-viscosity is n¢ = 25.
At the smallest grid size these coefficients result in the
following diffusive speeds: =hu 0.08, =x hu u1.5 , and

=n ¢u 0.15. During the eruption phase, fast flows and sharp
currents develop. Therefore, we fix h = ´ -2.1 10 ,cor

3
1

n¢ = 41.71 , and x h= .1 cor1 This is required to ensure the
numerical stability of the code.

Figure 1. Maps of Bz(z = 0) at the beginning (left) andend (right) of the
convergence phase for “Run C,” “Run S,” “Run D1,” and “Run D2” (first,
second, third, and fourth row, respectively). White (black) color indicates
positive (negative) magnetic field. Cyan/white arrows outline the initial
velocity profile. The field of view is x, y ä [ −3.3, 3.3].
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At the line-tied boundary, the photospheric resistivity hp is
set to zero during the twisting phase. This allows the buildup of
magnetic shear and current in the system without modifying the
photospheric distribution of Bz and without forming a
baldpatch as in Aulanier et al. (2010). During the convergence
phase, magnetic flux is advected toward the PIL with a rate that
varies with time in a nonlinear way, but that is always smaller
than u2 .0

max Therefore, in order to avoid flux pileup at the PIL
during the phase Ît t t100 ,A 1[ ], we impose a photospheric
resistivity h h= .p cor We choose this value because it seems to
be the best compromise between magnetic field diffusion and
flux advection for a significant portion of the PIL. Finally,
during the eruption phase ( t t1) the photospheric diffusion is
again set to zero. This eventually results in the onset of a
numerical instability close to the boundary at z = 0 that
originates from narrow photospheric current layers. This
problem is resolved by artificially smoothing the Lorentz force
within the first 22 grid points, i.e., for Îz 0, 0.165 .[ ] This is
achieved by multiplying the Lorentz force in the momentum
equation by a factor

s =
+ -

" Î
z

z
1 tanh 33 0.08

2
, 0, 0.165 . 15f

[ ( )] [ ] ( )

We choose this solution instead of an increased photospheric
diffusion, because the latter would induce reconnection at the
line-tied boundary and, more importantly, will essentially
modify the reference potential field energy during the study of
the instability.

3. DYNAMICS AND ENERGETICS

In this section the evolution of the system from the initial
current-free configuration to the formation of the flux rope and
its eruption is discussed. Although the timing and the onset of
the eruption differbetween the simulations, the overall
topological evolution of the system is the same for the different
runs. Therefore, we limit ourselves to the description of only
one of the four simulations, namely,“Run D1,” that is, a partial
dispersal of the active region field.

3.1. Dynamical Evolution

The top left panel ofFigure 2 shows selected magnetic field
lines highlighting the initial potential magnetic field configura-
tion of the system. In order to build up currents in the system at
the line-tied boundary, we apply the velocity field defined in

Figure 2. Evolution of the magnetic field for “Run D1” during the quasi-static shearing (left) andconvergence (middle) phase and the eruptive phase (right panels).
White (black) color indicates positive (negative)Bz(z = 0).
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Equation (8). As already mentioned, the applied motions are
never larger then a few percentof the Alfvén speed, and, as a
consequence, the coronal field evolves quasi-statically in
response to the photospheric driver.

The configuration of the system after t100 ,A i.e., at the end of
the twisting phase, is shown in the bottom left panel of
Figure 2. As is evident, the field lines close to the PIL (blue/
red/cyan field lines) are the most sheared ones, while the
overlying field (green field lines) only experiences a minor
twist. During this phase, no magnetic flux rope is observed.
Nevertheless, owing to the injected shear, the magnetic
pressure starts to increase, especially in the proximity of the
PIL, and the system slightly bulges up. In the simulation of
Aulanier et al. (2010) this initial bulging up of the field lines
close to the PIL, combined with the presence of a finite
photopsheric diffusion, resulted in a topological change of the
system from sheared-arcade to a three-dimensional bald-
patchconfiguration containing a bald-patch separatrix. Because
we explicitly impose h = 0,p no flux cancellation occurs close
to the PIL and no change in the topology is observed during the
twisting phase in our simulations, andhence no magnetic flux
rope is formed yet.

The aim of this first driving phase is to obtain a quasi force-
free field with a sheared-arcade topology. This constitutes the
initial condition for our study of different classes of photo-
spheric motions. These motions induce a deformation and
evolution of the active region similar to what is often observed
on the Sun.

Starting from this sheared-arcade configuration, we apply the
four different boundary motions described in Equations (11)–
(14). Figure 2 (middle panels) shows the response of the system
to these drivers (for “Run D1”).

As a consequence of the applied convergence motions,
photospheric flux is advected toward the PIL, andsince during
this phase we impose a finite photospheric diffusion, similarly
to Aulanier et al. (2010), we observe the transition from
sheared-arcade to a bald-patch topology. Magnetic reconnec-
tion occurs at the baldpatch,and a mildly twisted flux rope is
formed.

The top middle panel of Figure 2shows the configuration of
the system during the buildup phase of the flux rope. The
forming magnetic flux rope is highlighted by selected pink/
purple/cyan field lines. Pink (purple) field lines are traced
starting from the top (bottom) part of the positive (negative)
polarity. Cyan field lines are traced starting from locations that
are in between the pink/purple and the red/blue field lines. The
red/blue field lines are traced starting at either side of the
baldpatch, actually highlighting the bald-patch separatrix
below the magnetic flux rope. The figure also shows that the
flux rope field lines are about twice as long as the field lines
that extend at either sideof the bald-patch separatrix.

While the convergence motions continue, more and more
flux is advected toward and canceled at the PIL, and the bald-
patch separatrix evolves. In particular, the photospheric
footprints of the bald-patch separatrix continue to expand.
The bottom middle panel ofFigure 2shows a snapshot of the
system toward the end of this process and just before the onset
of the instability (see Section 4). The purple and pink field lines
show the main body of the flux rope. The cyan field lines show
the outer layer of the flux rope, that is, the set of field lines
belonging to the flux rope that come closest to the baldpatch.
Owing to the curvature of the flux rope axis, only those field

lines in the outer layer contain magnetic dips, while those close
to the axis do not. This may be contrasted with an ideal
cylindrical flux rope, where dips are present at all distances
from the axis. The figure also shows how the flux rope is
embedded between two set of sheared field lines (red/blue) and
much less sheared (i.e., quasi-potential) overlying magnetic
field (green field lines).
The formation phase of the magnetic flux rope is

morphologically similar to—but topologically different from
—what was observed in the simulation of Aulanier et al.
(2010). In the latter, the bald-patch separatrix disappeared quite
soon during the formation phase of the magnetic flux rope and
was replaced by a quasi-separatrix layer. The reconnection that
transferred flux from the overlying field to the magnetic flux
rope occurred at the hyperbolic flux tube. However, in our
simulations, the bald-patch separatrix is always present and the
magnetic reconnection occurs at the baldpatch only.
The top right panel of Figure 2shows the early stages of the

flux rope eruption. During this phase, photospheric diffusion is
reset to zero and no boundary flows are applied. Therefore, the
system only evolves in response to the imbalance between the
magnetic pressure associated with the current-carrying mag-
netic flux rope and the magnetic tension of the overlying field.
Furthermore, during the early stages of the eruption, the flux
rope expands outwardwithout any significant kink. When the
flux rope enters the dynamical regime, sheared post-flare loops
(not displayed in the figure) are formed below the current sheet,
as already discussed in Aulanier et al. 2012. During this phase,
the baldpatch is still present, and bald-patchfield lines are now
low-lying field lines with the second footpoint anchored close
to the central part of the PIL.
The continuous presence of baldpatches in our simulations

(in contrast with Aulanier et al. 2010) is probably due to the
convergence motions. As a consequence of these motions,
magnetic field is continuously advected toward the PIL at a rate
that is comparable to the diffusion rate, and this maintains the
bald-patch topology.
The final snapshot of the simulation is shown in the bottom

right panel of Figure 2, just before the fast flows generated
during the eruptive phase inducea numerical instability and
haltthe simulation. The flux rope undergoes a full eruption
and, during the propagation, is deflected toward the lowerleft
part of the domain. This deflection is probably a consequence
of the asymmetry of the system. The positive polarity is more
intense than the negative one, which results in a magnetic
pressure gradient that is directed toward the lower left part of
the domain. This kind of flux rope deflection has also been
found in a simulation of a more complex, asymmetric active
region (Zuccarello et al. 2012).

3.2. Energy Evolution

The evolution of the potential, free, and total magnetic
energies, as well as of the kinetic energy for “Run D1,” is
shown in Figure 3. The same plots for the other simulation runs
are presented in theappendix.
To compute the potential energy of the system for each

snapshot, we perform a potential field extrapolation of the
photospheric magnetic field Bz(z = 0) using the method of
Alissandrakis (1981). First, we extract the bottom boundary of
the simulation and remap the nonuniform grid of OHM-MPI
onto a uniform grid of [301 × 301] points, resulting in a
uniform grid spacing of about 10 times the smallest OHM-MPI
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grid cell. Second, in order to minimize the aliasing effects due
to the intrinsically assumed periodic boundary of the
fastFourier transformmethod, the remapped OHM-MPI
boundary is inserted at the center of an 8 times larger grid
that is padded with zeros. With this method we achieve an
accuracy in the magnetic energy computation, i.e., the
difference between the energy of the reconstructed field and
the energy of the field generated by the analytic charges of
about 0.1%.

As a result of the nature of the twisting flows—which do not
modify Bz at the boundary from t = 10tA to t = 100tA—the
potential energy of the system (“!”)remainsunchanged
and the increase in the total magnetic energy (“+”) is
directly related to the increase of the free magnetic energy
(“♢”).However,during the convergence phase, i.e., from
t = 105tA to t = 220tA, the distribution of Bz at the boundary
is modified by the flows and the potential energy of the system
changes, eventually reaching about half of its initial value.
During this phase, the total magnetic energy also decreases;
however, the free magnetic energy continues to increase. At the
end of the convergence phase, the system has a free magnetic
energy that is of the same order of the potential energy;ther-
efore, about half of the total magnetic energy stored into the
system is available for the eruption.

During the twisting and convergence phases, the kinetic
energy always remains very low, eventually confirming that the
system evolves quasi-statically. At about t = 210tA the kinetic
energy starts to rise exponentially, but at t = 220tA the pseudo-
viscosity is increased (Section 2.3) and the initial rise of the
kinetic energy is smoothed out for about 5–10tA. After that, the
exponential increase of the kinetic energy continues until the
end of the simulation. As a final remark, we note that the
kinetic energy constitutes only a very moderate fraction (∼4%)
of the free magnetic energy released during the eruption.

4. ERUPTION ONSET AND TRIGGER

The dynamical evolution of the system and the previous
results of Aulanier et al. (2010) suggest that the torus instability

is the trigger of the flux rope eruptions presented in this paper.
Moreover, as discussed by Démoulin & Aulanier (2010), the
exact value of the critical decay index at the onset of the
eruption may be different depending on the exact morphology
of the flux rope.
To clarify these points, in this section we present the analysis

that we performed in order to determine(1) the value of the
critical decay index at the onset of the eruption and (2) whether
the torus instability is the trigger of our eruptions. In particular,
we first determine the moment of the eruption (i.e., t1) by
performing relaxation runs, and then, around the moment of the
eruption, we identify the axis of the flux rope and compute the
decay index at different heights. Finally, we determine the
value of the decay index at the height of the flux rope axis for
both eruptive and noneruptive runs.
In the following subsections the different stages of our

analysis are described in detail.

4.1. Relaxation Runs

In order to determine the time of the onset of the eruptions, at
different times *t during the convergence phase we impose

* =u t t 00 ( ) , h = 0p and let the system evolve. The
photsopheric flows are always slowed down by using the
function γ(t) defined in Equation (10). The first time *t for
which the eruption becomes unavoidable defines the time t1
discussed in Section 2.2 and Equation (10).
For “Run C” we find that for * =t t188 A no eruption occurs,

while for * =t t192 A the flux rope erupts, but it gets deflected.
In fact, at the initial phase of the instability onset the magnetic
pressure of the magnetic flux rope is just enough to overtake
the magnetic tension of the overlying field, and the flux rope
starts to ascend. Owing to the asymmetry of the configuration,
the magnetic field of the positive polarity is larger than the one
of the negative polarity, and a magnetic pressure gradient
exists. During the early stages of the eruption, this pressure
gradient influences the dynamic of the flux rope, eventually
deflecting it toward the lower left boundary. If the photospheric
motions for “Run C” are stopped at * =t t196 A, the flux rope
experiences a “full eruption,” like the one discussed in
Section 3. During this extra time, extra current-carrying
magnetic flux (and hence magnetic pressure) is injected into
the flux rope, eventually mitigating the effect of the asymmetric
pressure gradient due to the external field.
It should be noted that the deflection of the magnetic flux

rope is observed also in the “fully eruptive” runs
(Section 3)but develops at a later stage. For the fully eruptive
runs the pressure gradient associated with the flux imbalance
influences only the propagation of the magnetic flux rope rather
than its initial dynamics.
For “Run S” we observe a similar behavior. If we stop the

phostospheric driver at * =t t206 ,A the system finds a new
equilibrium, while if the photospheric driver is switched off at
* =t t210 ,A an eruption occursbut undergoes a very strong
deflection toward the boundary. If * =t t214 ,A a full eruption
occurs.
For “Run D1” (“Run D2,” respectively) the evolution is

slightly different. If the photospheric driver is interrupted at
* =t t216 A ( * =t t160 ,A respectively) no eruption occurs, but
if the driving is stopped four Alfvén times later, i.e., at
* =t t220 A ( * =t t164 ,A respectively), the system undergoes a
full eruption without displaying the deflection that is observed
for “Run C” and “Run S.” One of the differences between “Run

Figure 3. Temporal evolution of the free magnetic energy in the system (purple
“♢”) and of the kinetic (black “×”), potential (red “!”), and total (blue “+”)
magnetic energy of the system normalized to the energy of the initial (potential)
magnetic field for “Run D1.” The magnetic energy of the initial potential field
is = =E t 0 174.4.pot ( )
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C, S” and “Run D1, D2” is that in the latter the prescribed
motions are perpendicular to the PIL, while the former ones are
parallel to the x-axis, inducing a photospheric flux distribution
that eventually increases the original asymmetry (and magnetic
pressure imbalance) of the overlying magnetic field.

4.2. Flux Rope Axis

Magnetic flux ropes are generally defined as an ensemble
of twisted magnetic field lines that wrap around a common
central axis. However, when the twist is  p2 , the wrapping
is not full and the identification of the axis of the magnetic

flux rope is difficult. As a consequence, a unique criterion
fo`r the identification of the axis of a magnetic flux rope
does not exist, and different cases should be analyzed
individually.
For curved flux ropes that are in equilibrium with an external

magnetic field, the apex of the flux rope’s axis must lie along
the local PIL. Therefore, at the location of the apex, Bz must
change sign. Moreover, in our simulations the flux rope (at
least the highest part of it) is almost parallel to the y-
axis;therefore, at the height of the axis, Bx must changesign-
with the height z.

Figure 4. Vertical dependence of the norm, x, y, and z components (blue, brown, black, and red lines) of the magnetic field (solid lines) andcurrent density (dashed
lines), as well as of the decay index (solid purple line) at a given (x, y) position and time t (indicated in each panel) for “Run C,” “Run S,” “Run D1,” and “Run D2”
(from top left to bottom right, respectively). The vertical dotted line indicates the height where both Bx and Bz change sign.
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To determine the axis of the magnetic flux rope, we then
proceed as follows. For the simulation output at time =t t1
( t t t t192 , 210 , 220 , 164A A A A for Runs C, S, D1, D2,respec-
tively), we look at the three components of the magnetic field
along vertical lines passing through different [x; y] positions
along the PIL. Among the different positions, we look for the
one x y;[ ¯ ¯] where the change in sign of Bx and Bz occurs at the
same height =z z.¯ The axis of the magnetic flux rope (see
yellow tube in Figure 6below) is then assumed to be the
magnetic field line that passes through the position x y z; ;[ ¯ ¯ ¯] at
time t = t1.

Figure 4 shows the norm and the three components of the
magnetic field (solid lines) and of the current density (dashed
lines) along the vertical z-axis that passes through x y; .[ ¯ ¯]

The vertical dotted line indicates the height z̄ where both Bx

and Bz change sign, that is, the height of the apex of the
magnetic flux rope’s axis. As is evident, the apex of the
magnetic flux rope does not have the same position in all the
simulations. In particular, for “Run C” and “Run D2” the
eruption begins at a lower heightthan in “Run S” and
“Run D1.”

Interestingly, we find a posteriori in Figure 4 that the current
density has a local maximum along the axis of the magnetic
flux rope and is almost aligned with it ( J Jy∣ ∣). This behavior
is quite similar to what is expected for a flux rope generated by
a relatively thick current wire or an NLFF cylindrical constant-
twist (Gold–Hoyle) flux rope. Closer to the photosphere the
maximum of the norm of the current density highlights the
narrow current layer associated with the bald-patch separatrix.
This is the region where magnetic reconnection occurs,
eventually transferring flux from the overlying field into the
flux rope field.

4.3. Decay Index

The magnetic field that is relevant to compute the decay
index is the so-called external field,whichis not associated
with the coronal currents. In the symmetric configurations
where the torus instability has been originally formulated the
“external field” is the one generated by the sub-photospheric
charges. At the axis of the flux rope, it has only a toroidal
component.

We use the potential field associated with the photospheric
distribution of =B x y z, , 0z ( ) at time =t t1 (see Section 3.2) as
the external field to be used for the computation of the decay
index. Furthermore, to account for the intrinsic asymmetry of
our model, only the horizontal component of the reconstructed
potential field is used.

Two-dimensional maps of the decay index for different
heights and for the four different simulations are shown in
Figure 5. Only the contours where =n 1, 1.25, and 1.5 are
shown (for “Run D2” an extra contour at n = 1.4 is also
included). The yellow (orange) line indicates the PIL of the
potential field (in the simulation) at any given height. Finally,
the white square indicatesthe x y,[ ¯ ¯] position of the apex of the
magnetic flux ropesas determined in Section 4.2.

Figure 5 (first row) shows maps of decay index for “Run C.”
The contour n = 1.5 touches the local PIL of the simulation
(i.e., the PIL of the flux rope) at a height z 2. This is
remarkably close to the height of the axis of the magnetic flux
rope at =t t192 A (Figure 4, top left), when the deflected
eruption began.

For “Run S” at the onset of the eruption, the axis of the
magnetic flux rope has a height z 2.3. Figure 5 (second row)
shows that the critical value n = 1.5 of the decay index at the
location of the apex of the magnetic flux rope’s axis is reached
between z = 2.2 and z = 2.4. This is in very good agreement
with the original =n 1.5crit of the torus instability scenario. A
similar conclusion can be drawn also for “Run D1,” where the
actual value of the decay index at the position of the apex is

n 1.45crit (Figure 4, bottomleft, and Figure 5, third row).
From the bottom right panel of Figure 4we can deduce that

for “Run D2” the eruption begins when the flux rope axis has a
height z ; 1.95. As is evident, the decay index at the apex of
the magnetic flux rope’s axis (purple curve) has not yet reached
the value n = 1.5. This is more evident in Figure 5 (fourth
row): at z = 2 the contour n = 1.4 has already touched the PIL,
while the contour n = 1.5 touches the PIL only at z = 2.2. This
seems to suggest that for “Run D2” the critical decay index for
the onset of the eruption is about 7% smaller than for the other
three cases.

4.4. Unique Critical Decay Index?

The results of the performed analysis are synthesized in
Figure 6. In this figure for the simulation runs that exhibited an
initial deflection, i.e., “Run C” and “Run S,” three different
snapshots around the moment of the onset of the eruption are
presented. For “Run D1” and “Run D2” no deflected eruption
is observed, and therefore only two snapshots around the onset
time are shown.
For each snapshot of the same row (i.e., same boundary flow

profile), the magnetic field lines are traced starting from the
same footpoints and are color-coded with the current density.
The thicker yellow field line represents the axis of the magnetic
flux rope as identified in Section 4.2. The purple semitran-
sparent plane represents the critical height (different for each
simulation) where the contour n = 1.5 of the decay index
touches the PIL of the simulation. This height is z = 2, 2.3,
2.5, and 2.2 for Runs C, S, D1, and D2, respectively
(seeSection 4.3 and Figure 5).
For each of the simulations the configuration displayed in the

left panelsis stable, i.e., no eruption occurs if the photospheric
driver is stopped (see Section 4.1). It is evident from Figure 6
(left panels) that at this time the axis of the magnetic flux rope
has not yet reached the height where n = 1.5 and no eruption
occurs.
For the two deflected eruptions, i.e., “Run C” and “Run S,”

the middle panels of Figure 6 (top two rows) report the
configuration of the system when the deflected eruptions occur.
As is evident,the axis of the flux rope has reached the height
where n = 1.5, and even if we stop the driver now, the eruption
occurs anyway. The system has entered an unstable regime and
evolves, driven by the imbalance between the magnetic
pressure of the flux rope and the magnetic tension of the
overlying field. It is very interesting that for these two
simulations the critical value for the onset of the torus
instability is remarkably close to the theoretical value for a
thin circular current ring (Démoulin & Aulanier 2010). Finally,
if we switchoff the flows four Alvén times later (Figure 6, two
topright panels), the axis of the magnetic flux rope is well
above the theoretical critical height and the eruption develops
without any deflection (apart from the interaction with
the boundary during the propagation). As already mentioned
in Section 4.1, this is probably due to the extra magnetic
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pressure built into the flux rope during the extra conver-
gence time.

Figure 6 (two bottom right panels) show the eruptive
configuration for “Run D1” and “Run D2.” As is evident, for
both simulations the axis of the magnetic flux rope has not yet
reached the height where n = 1.5 (semitransparent purple
plane), but the eruption occurs anyway. As can be deduced

from the previous section, the value of the decay index is
n 1.4 1.45,crit – that is, still very close to n = 1.5.

4.5. The Effect of the Diffusion Coefficients

During the eruption, strong flows originate at the current
sheet that develops below the erupting flux rope, eventually

Figure 5. Two-dimensional maps of contours of the decay index—n = 1 (cyan), n = 1.25 (green), n = 1.5 (red)—overplotted to the normal component of the
magnetic field at different heights for “Run C,” “Run S,” “Run D1,” and “Run D2” (first, second, third, and fourth row, respectively). For “Run D2” the contour of the
decay index at n = 1.4 (dark blue) is also shown. The orange (yellow) line indicates the PIL of the simulated (extrapolated) magnetic field. The white square indicates
the (x; y) position of the apex of the flux rope’s axes. The extrapolations have been performed at times 194tA, 214tA, 220tA, and 164tA for Runs C, S, D1,and
D2,respectively.
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resulting in a numerical instability and halting the simulation.
As discussed in Section 2.3, this can be resolved by increasing
the diffusion coefficients. In order to minimize the variation
between the different runs, the relaxation runs are performed
with the same conditions as the eruptive ones. In other words,
at time t = t1 not only are the flows switched off, but the
coronal diffusive coefficients are also modified according to
what is discussed in Section 2.3. This results in an over-
estimation of the critical value of the decay index.

The system approaches the critical point for the onset of the
instability in an environment that is characteristic by “low”

diffusion coefficients. Under this condition, current is built up
into the magnetic flux rope through magnetic reconnection at
the baldpatch and slowly rises. At a certain moment, it reaches
the height where n = ncrit and starts to accelerate under the
effect of the torus instability. However, at the same time, we
increase the coronal diffusivity by a factor of 4.37, eventually
suddenly dissipating part of the magnetic flux rope’s current
and bringing the flux rope back to the equilibrium curve.
Therefore, in order for the eruption to occur, extra current,
behind the amount required under “low” diffusion conditions,
must be injected into the flux rope to account for the increased

Figure 6. Snapshots around the time of the instability onset for “Run C,” “Run S,” “Run D1,” and “Run D2” (first, second, third, and fourth row, respectively). The
purple semitransparent plane indicates the height (z)—as deduced from Figure 5—where the contour of the decay index, n = 1.5, touches the part of the PIL occupied
by the flux rope. The field lines are color-coded with the magnitude of the current density using the same difference between the low and upper limits of the color
scale.
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diffusivity during the early stages of the eruption. During this
extra time, the flux rope quasi-statically raises a little further up,
eventually leading to a slight overestimation of the critical
value of the decay index.

For one selected run (“Run C”) we performed some
relaxation runs without increasing the coronal diffusive
coefficients. The left panel of Figure 7shows the current
distribution and the decay index along a vertical line passing
through the x y,[ ¯ ¯] location of the apex. In the “low” diffusion
regime the deflected eruption begins at =t t184 .1 A At this time
the apex of the flux rope is at z 1.75. The configuration of
the system around the moment of the eruption is shown in the
middle and right panels of Figure 7. The semitransparent green
plane indicates the height z = 1.75 where the decay index at the
apex of the magnetic flux rope is n 1.4 (see Figure 7). If the
photospheric motions are stopped at * =t t180 ,A no eruption
occurs. However, if we stop the flows four Alvén times later, a
deflected eruption occurs. At time * =t t184 ,A the axis of the
flux rope has just reached the height where n 1.4,crit
suggesting that this is the critical decay index in the “low”
diffusion regime. Therefore, the critical values of the decay
index presented in the previous section should be considered as
an upper limit, with a margin of about 7%.

5. DISCUSSION AND CONCLUSION

We perform a series of numerical MHD simulations in order
to investigate the initiation and early evolution of flux rope
eruptions. We examine how the initiation process depends on
the photospheric magnetic field distribution and the current
profile of the flux rope. In particular, we examine whether the
trigger of the eruption is independent of the boundary flows
that drive the system and form the flux rope.

We perform four calculations using different photospheric
driving flows. Each calculation is split into three phases
characterized by the nature of the applied photospheric driver.
In the first two phases, driving flows are imposed in order to
form a flux rope. In the final phase, no driver is imposed, and
the system is allowed to evolve on its own.

In the first phase, we impose vortex motions (the same for all
the calculations) around the isocontours of the normal
component of the magnetic field. This flow profile generates
electric currents in the volume and causes the system to evolve
into a quasi force-free state. At the end of this phase, the

magnetic field consists of a strongly sheared arcade near the
PIL enclosed by an overlying quasi-potential field. The flow
profile in this phase is chosen to build up shear in the system,
not to mimic flows observed on the Sun. Although vortex
motions are quite often observed around sunspots, they are
rarely so uniform and long lasting (in terms of Alfvén times) as
the ones that we impose.
In the second phase, we impose four different classes of

photospheric motions. Unlikethe previous phase, each of the
four calculations is subjected to a different flow profile. The
profiles are chosen to mimic different processes commonly
observed during the evolution of active regions, such as the
deformation and spreading of photospheric magnetic field
polarities. Similarly to what is observed on the Sun, these
motions have a converging component, i.e., they tend to draw
flux toward the PIL. The flows are defined in terms of the
magnetic field gradient (see Section 2.2 for details). Since the
magnetic field at the boundary is evolved with the induction
equation using the line-tied boundary conditions, the flows are
nonlinear in both time and space. Finally, all the imposed
motions are always sub-Alfvénic (peaking at 5% of the mean
coronal Aflvén speed), and the corona responds quasi-
statically.
The flows at the photosphere draw flux toward the PIL,

where flux cancellation occurs because the magnetic diffusivity
in our model is finite. As a consequence, the topology of the
magnetic field changes from that of a sheared arcade to that of a
configuration with a bald-patch separatrix. During this phase,
the applied photospheric flows transport magnetic flux toward a
three-dimensional current sheet, which results in the formation
of a flux rope through magnetic reconnection at the baldpatch.
As this process continues, the flux rope slowly rises owing to
the buildup of magnetic pressure. However, after a certain
point, the system undergoes a transition to a dynamical regime
characterized by the exponential growth of the kinetic energy,
and the flux rope erupts.
The third phase begins when the rope becomes unstable, at

which point we stop all photospheric driving. The instability
point is a priori unknown, and we determine it by a series of
relaxation runs (see Section 4.1).
In summary, for a complete calculation, we drive the system

to form a flux rope, which we then bring to the threshold of
instability. At this point we stop driving the system and let it
evolve freely to an eruption.

Figure 7. Left panel: same as Figure 4but for “Run C” under “low” coronal diffusion conditions. Middle and right panels: two snapshots around the time of the
instability onset for “Run C” under “low” coronal diffusion conditions. The green semitransparent plane indicates the height (z) where the critical decay index at the
apex of the magnetic flux rope is ncrit = 1.4. The field lines are color-coded with the magnitude of the current density, and the yellow thick tube indicates the magnetic
flux rope’s axis.
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We study the evolution of the system in the framework of the
torus instability scenario, because it gives a well-defined
threshold that can also be applied to observations. For quasi-
statically evolving magnetic fields, it has been shown that the
catastrophe and torus instability scenarios give the same
prediction for the onset of the loss of equilibrium or the torus
instability (Démoulin & Aulanier 2010; Kliem et al. 2014). The
same is true when the torus instability criterion is compared
with analysis based on the energy of the semi-open field
associated with a given magnetic field distribution at the
boundary (Amari et al. 2014).

The height of the flux rope when it erupts depends on how
the photospheric magnetic field is evolved. Two interesting
examples are “Run D1” and “Run D2.” For these two
calculations the apex of the magnetic flux rope at the onset
of the eruption is located at z 2.45 and z 1.95,
respectively. Török & Kliem (2007) have shown that the
height of the onset of the eruption increases when the distance
between the photospheric charges increases. As can be deduced
from Figure 1, the central part of the flux distribution for “Run
D1” is essentially unmodified, resulting in a highly concen-
trated flux distribution in the central part of the polarity.
However, for “Run D2,” the magnetic flux is more uniformly
distributed within the whole polarity. As a result, the
baricentrum of the magnetic flux is closer to the PIL for
“Run D2” than for “Run D1,” which results in a dipole with a
smaller length scale and, therefore, a lower critical height for
the onset of the torus instability.

The top panel of Figure 8shows the profile of a = J B B2·
along a vertical line passing through the apex of the axis of the
magnetic flux rope at the moment of the onset of the instability.
Two different critical heights can be seen in the figure. “Run C”
and “Run D2” both have a critical height of z 2, while “Run
S” and “Run D1” both have a critical height of z 2.4.The
bottom panel of Figure 8shows the same αprofiles, but shifted
by the height of the axis of the magnetic flux rope. This allows
a direct comparison of the different curves. All the flux ropes
are quite similar, but “Run D1” displays some minor
differences. A comparison between “Run C,” “Run S,” and
“Run D2” shows that similar flux ropes have different critical
heights. In addition, “Run D1” and “Run S” have similar
critical heights ( z 2.4), but their α profiles are different
(within the limitations of a 1D plot). We find that what is
crucial for the onset of the eruption is not the actual height of
the flux rope, but the fact that the flux rope approaches the
regions where the decay index is close to the predicted critical
range =n 1.4 1.5.crit – This provides strong evidence in favor of
the torus instability scenario.

In a current-wire treatment of the torus instability, the
morphology of the current channel influences the critical value
of the decay index. For example, the critical decay index of a
straight wire is typically smaller than a circular wire. For our
simulations, we find that the only case with a noteworthy
difference in the critical decay index is “Run D2,” but its flux
ropecurrent profile is not significantly different from those of
“Run C” and “Run S.” We stress that our model flux ropes are
quite similar (see Figure 6);however, it is possible that a
geometrical effect may have also played a role in the eruption,
although it cannot be easily disentangled in our asymmetric
configuration. Nevertheless, it is interesting that “Run D2” is
the case that displays a lower value of the critical decay index
and is also the one where the convergence flows induce the

most significant modification of Bz at the boundary. The lower
values of the critical decay index in the latter simulation may be
due to the different evolution of the bald-patch separatrix,
which possibly induces different line-tying effects.
Figure 6 shows a local enhancement in the current density in

the whole volume of the flux rope. This suggests that if one
wanted to compare our flux rope model with the wire models,
one should consider an almost circular, relatively thick current
channel. In this context, Démoulin & Aulanier (2010) predicted
a critical value of the decay index that depends on whether or
not the current channel expands during the perturbation. The
value that we find, n 1.4 1.5,crit – would be compatible with a
flux rope that has constant current during the perturbation.
However, the simulation without the “increased” diffusion
showed that this range could be up to about 7% lower, that is,

n 1.3 1.4.crit – This range would also be compatible with
circular current wires with a time-varying current. Various
processes can influence the evolution of the current within the
flux rope as it evolves. During its slow quasi-static rise, the flux

Figure 8. Top panel: vertical dependence of a = J B B2· along a line passing
through the magnetic flux rope’s axis. The vertical dotted lines indicate the
height of the magnetic flux rope’s apex for each simulation (color code) at the
moment of the onset of the instability. Bottom panel: same as thetop panel, but
now the plot is shifted along the z-axis by an amount z0, equal to the height of
the axis of the magnetic flux ropes.
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rope expands, which causes its twist per unit length to decrease.
As a result, the volume current in the rope also decreases.
However, during the formation process, and subsequently the
eruption itself, magnetic reconnection at the baldpatch, and
subsequently at the flare current sheet, clearly injects some
sheared, current-carrying, magnetic flux into the flux rope, and

this must eventually increase the volume current therein. If the
two opposite effects balance each other, then the volume
current of the flux rope may not vary too much, which will
result in an instability threshold similar to the one for currents
rings with a modest temporal variation of the current, that is,

Î -n 1.2 1.5crit [ ] (Démoulin & Aulanier 2010).
The analysis presented in this paper suggests that the trigger

of the eruptions is the torus instability regardless of the exact
morphology of the magnetic flux rope and of the photospheric
evolution of the active region. However, several phenomena,
such as line-tying, magnetic reconnection at baldpatches, and
different evolution of the photospheric magnetic field, affect
the critical decay index for the onset of the instability, resulting
in a “critical range” rather than a “critical value.” We speculate
that the decrease of the current due to the flux rope expansion
and its increase due to the bald-patch reconnection compensate,
resulting in a critical range that is not too different from the
analytical predictions of the wire models.
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APPENDIX

In Section 3.2 and Figure 3 we presented the evolution of the
potential, free, and total magnetic energies, as well as the
kinetic energy for “Run D1.” In Figure 9 we report the same
plots for the other simulation runs.
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