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ABSTRACT

We investigate the utility of a superposition of coherent states for quantum information processing. We show
that quantum computation circuits using coherent states as the logical qubits can be constructed from simple
linear networks, conditional measurements and coherent superposition resource states. We can utilize such states
and associated quantum circuits for two quantum metrology applications, one for weak force measurements and
the second for precise phase estimation. We show in both cases that a sensitivity at the Heisenberg limit is
achievable.
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1. INTRODUCTION

Quantum optics has played a major role in the testing of fundamental properties of quantum mechanics and in
more recently implementing simple quantum information protocols.1, 2 This has been made possible because
photons are easily produced and manipulated. This is especially true as the electro-magnetic environment at
optical frequencies can be regarded as vacuum and is hence are relatively decoherence free.

One of the earliest proposals for implementing quantum computation made by Milburn3 and was based on
encoding each qubit in two optical modes, each containing exactly one photon. This was a very elegant proposal,
but unfortunately to entangle these photons required two qubit gates with massive and reversible non-linearities.
Such reversible non-linearities well beyond those presently available and hence it was thought quantum optics
would not provide a practical path to efficient and scalable quantum computation. Knill, Laflamme and Milburn4

recently challenged this orthodoxy when they showed that given appropriate single photon sources and detectors,
linear optics alone could create a non-deterministic 2 qubit gates (see Fig(1)). Furthermore they showed that
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Figure 1. Schematic circuit for the KLM CNOT gate. The boxes in the center of the circuit are nonlinear sign shifts
gates that perform the transformation c0|0〉+c1|1〉+c2|2〉 to c0|0〉+c1|1〉−c2|2〉. Such a transformation can be performed
using on linear optical elements, single photon sources and single photon number resolving detectors.

near deterministic gates could be created from these non-deterministic gates through a technique of teleporting
gates.5 This therefore provided a route for efficient and scalable quantum computation with only single photon
sources, photon counting and linear optics.
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This does however raise the question where there are other architectures based on different encoding schemes
which have similar characteristics. These other architectures may have advantages in that there optical circuit
are less complex. We could trade of the complexity of the circuit in the KLM scheme for more complicated initial
resources, for instance continuous variable multi-photon fields. The idea of encoding quantum information on
continuous variables of multi-photon fields has emerged recently6 and a number of schemes have been proposed
for realizing quantum computation in this way.7–9 A significant drawback of these proposals is that hard
non-linear interactions are required in-line of the computation and make such proposals difficult to implement
in practice. In this paper we investigate an efficient scheme which is elegant in its simplicity and the use of
only easy, linear in-line interactions. The hard interactions are only required for off-line production of resource
states. Our proposal involves encoding the quantum information in multi-photon coherent states, rather than
single photon states. Simple optical manipulations acquire unexpected power in this situation. However the
required resource, which may be produced non-deterministically off-line, is a superposition of coherent states.10

Given this, the scheme is deterministic and requires only simple linear optics. Qubit readout uses homodyne
detection which can be highly efficient.11 This allows us to produce a universal set of gates sufficient for quantum
computation. Are there other nature applications for resources and gates. One nature application lies in high
precision measurements where we will examine two specific examples: the detection of weak tidal forces due to
gravitational radiation1, 12, 13 and improving the sensitivity of Ramsey fringe interferometry.14, 15

This paper is structured as follows: Section (2) describes a scheme for generating the superposition of coherent
states while section (3) describes how to achieve a universal set of gates sufficient for quantum information
processing. Finally section (4) illustrates two quantum metrology examples.

2. GENERATION OF SCHRÖDINGER CATS STATE

Before we focus our attention on logic gates and quantum metrology it is critical to highlight how small amplitude
Schrödinger cat states of the form

|Ψ±〉 =
1√N±

[|α〉 ± | − α〉] , (1)

where N± = 2± 2e−2|α|2 , can be realized using technologies currently available or likely in the near future. The
amplitude of these cat states need not be large to demonstrate logic gates for instance (α ≈ 2 is sufficient). An
elegant proposal has been made by Dakna et.al16 who scheme is depicted in Fig (2a). A squeezed state of the
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Figure 2. Schematic diagram in a) of the generation of a Schrödinger like cat state by means of a conditional photon
number measurement on a beam splitter. A single mode squeezed state is input into one port of a variable reflectivity
beam-splitter with the vacuum on the second port. A definite measurement of m photons (with m > 0) on one output port
of the beam-splitter prepares to a good approximation the required cat state. In b) we plot the Q function Q = |〈β|Ψ〉|2
versus the two canonical phase space variables (X = Re(β) and P = Im(β)) for the state (3) with m = 10 and a mean
photon number of 〈n〉 = 4.
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(with λ being the squeezing parameter) is input into a variable transmitivity beam-splitter (with coefficient
cos2 θ). The second port has only a vacuum input. On one output port from the beam-splitter a definite photon
number measurement given by the POVM |m〉〈m| is performed giving the result m. This conditional state at
the remaining output port is

|Ψm〉 =
1√Nm

∑
n

cn,m

(
λ cos2 θ

2

)n+m
2

|n〉 (3)

where Nm is the normalization constant. For m (m ≥ 4) sufficiently large (3) is a good approximation to the
state (1). The overlap between these state is high (in excess of ninety five percent for a wide range of parameters).
In Fig (2b) we show the Q function of the state (3) versus the two canonical phase space variables X = Re(β)
and P = Im(β). The two peaks in the Q function are characteristic of the Schrodinger cat nature and indicate
that an approximate cat state has been generated. These cat resources are also easily entangled using linear
optics using for instance the arrangement depicted in Fig (3). A maximally entangled state of the form

|Ψ〉 =
1√
N̄

[|α〉|α〉 + | − α〉| − α〉] (4)

where N̄ is the normalization constant can be created by combining a single mode cat state of the form |√2α〉+
| −√

2α〉 with the vacuum state on a 50/50 beam-splitter. This resulting entangled state is a critical resource in
creating our universal set of quantum logic gates.

|0〉
|α〉|α〉+|-α〉|-α〉}50/50 BS

|  2α〉+|-  2α〉

Figure 3. Schematic circuit to produce a two mode maximally entangled cat state

3. UNIVERSAL QUANTUM LOGIC GATES

As we start to consider a universal set of quantum logic gates, it is essential to define what our qubits are. We
will consider an encoding of logical qubits in coherent states with the logical 0 state being |0〉L = | − α〉 and
|1〉L = |α〉 being the logical one state. For convenience and without loss of generality we will choose α to be
real. These qubits are not strictly orthogonal, but the approximation is good for α even moderately large as
|〈α| − α〉|2 = e−4α2

. For α ≥ 2 the overlap between the zero and one logic qubit state gives |〈α| − α〉|2 ≤ 10−6.
Given the definition our qubit basis states what gates operations are necessary to be able to do a general
computation. It is well known that to perform universal computation one needs to be able to perform an
arbitrary single qubit rotations. Such rotations for our case can be built from four basic single qubit gates. The
first two gates are bit and sign flip operations and are given as follows:

• A bit-flip: The logical value of a qubit can be flipped by delaying it with respect to the local oscillator by
half a cycle. Thus the “bit-flip” gate X is given by

X = Exp[iπâ†â]. (5)

where a, a† are the annihilation and creation operators for the single mode of the electromagnetic field. For
example, a qubit of the form µ| −α〉+ ν|α〉 is flipped to µ|α〉+ ν| −α〉 under the action of the X operator.
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• A sign-flip: The sign flip gate Z can be achieved using a teleportation protocol and the maximally entangled
resource (4). Consider that we wish to sign flip the qubit state µ| − α〉+ ν|α〉). A Bell state measurement
is performed between one half of the resource (4) and the qubit of interest. Depending on which of the
four possible outcomes are found the other half of the Bell cat is projected into one of the following four
states with equal probability:

µ| − α〉 + ν|α〉 (1) µ| − α〉 − ν|α〉 (2)
µ|α〉 + ν| − α〉 (3) µ|α〉 − ν| − α〉 (4) (6)

The bit flips in results three and four can be corrected using the X gate. After X correction the gate has
two possible outcomes: either the identity has been applied, in which case we repeat the process, or else
the required transformation

Z(µ| − α〉 + ν|α〉) = µ| − α〉 − ν|α〉 (7)

has been implemented. On average this will take two attempts and thus consume on average two Bell-cats.

The remaining two operations are arbitrary rotations about the z and x axis and like the sign flip operation X
use a teleportation protocol to achieve the gate. These operations are given by

• An arbitrary rotation φ about the Z axis, schematically depicted in Fig (4) can be implemented by first by
displacing our arbitrary input qubit µ| − α〉 + ν|α〉 by a small amount β = αθ in the imaginary direction.
This results in the state

D(iβ) (µ| − α〉 + ν|α〉) = µ| − α(1 − iθ)〉 + ν|α(1 + iθ)〉 (8)

which is a small distance outside the computational space. The teleportation then projects us back into
the qubit space resulting in the state

TXD(iβ) (µ| − α〉 + ν|α〉) = e−θ2α2/2(e−iθα2
µ| − α〉 + eiθα2

ν|α〉) (9)

Up to the global phase the transformation is then R(Z, 2θα2). This gate is near deterministic for a
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D(iθα)
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X Z |Qout〉

Displacement

50/50 BS

|  2α〉+|-  2α〉

Figure 4. Schematics for implementing the R(Z, φ) gate. We begin by first shifting our qubit a small distance out of the
computational basis and then using teleportation to project back into the qubit space.

sufficiently small values of θ2α2. Repeated application of this gate can build up a finite rotation with high
probability.

• The fourth gate to consider is an arbitrary rotation φ about the X axis. The gate is shown schematically in
Fig.(5). For an arbitrary input state µ| − α〉 + ν|α〉 this circuit and interaction produces the output state

CaCbUBS(µ| − α〉 + ν|α〉) = {(eiθα2
µ± e−iθα2

ν)| − α〉 + (±e−iθα2
µ± eiθα2

ν)|α〉} (10)

where Ca and Cb represent cat state projections onto either the even or odd parity cat. The ± signs depend
on the outcome of the cat state measurements. However using X and Z gates we can correct all the ±’s to
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Figure 5. Schematics for implementing the R(X, φ) gate.

+’s. The gate R(X, 2θα2) then implements a rotation 2θα2 about the X. This gate is near deterministic
for a sufficiently small values of θ2α2. Repeated application of this gate can build up a finite rotation. As
a specific example, if we started with the initial state |α〉 then for an appropriate valve of θα2 the output
state from this gate is |α〉 − | − α〉. Hence the gate has implemented an Hadamard transformation.

By combining these gates it is possible to achieve an arbitrary single qubit rotation. If we can supplement
these with a single two qubit entangling operation between the qubits, then we have a universal set. We will
show two very simple and related examples

• The beam-splitter as a phase gate. We depict the gate circuit schematically in Figure (6).Consider initially
that we have our control qubit in the state |ψc〉 = µ1| − α〉 + ν1|α〉 and the target state as |ψt〉 =
µ2| − α〉 + ν2|α〉. We begin displacing both by an amount D(α). The resulting total state is

|Qout2〉

|Qout1〉

|Qin2〉

|Qin1〉

D(α)

θ

D(−α)

BS

Figure 6. Schematics of implementing a two qubit phase gate gate.

|Ψc〉 = [µ1|0〉 + ν1|2α〉]c ⊗ [µ2|0〉 + ν2|2α〉]t (11)

Now combining both modes on a beam-splitter with reflectivity θ and displacing the resulting modes by
an amount D(−α) each, we get

|Ψc〉 = µ1µ2| − α〉| − α〉 + µ1ν2| − α〉|α〉 + ν1µ2|α〉| − α〉 + e4θα2
ν1ν2|α〉|α〉 (12)

For 4θα2 = π we have the |α〉|α〉 term flipping sign while leaving all the other terms unaffected. This is
a controlled phase gate. There is an implicit assumption that θ2α2 � 1 which means that the gate may
need to be applied a number of time to build up the appropriate phase shift. A teleportation circuit could
be added to both the control and target modes to project the state back into the qubit space.

• The second example we will consider is the 2-qubit R(Z ⊗ Z,−φ) gate which can be implemented in a
similar way to the single qubit Z rotation. This explicitly uses a teleportation circuit. A schematic circuit
for the gate is depicted in Fig (7). Consider the action of two two coherent state qubits |γ〉a and |β〉b input
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Figure 7. Schematics of implementing the R(Z ⊗ Z,−π/2) gate. For a sufficiently small value of θ2α2 this gate is near
deterministic. Repeated application of this gate can build up to a π/2 rotation with high probability.

on a beam-splitter whose interaction is given by

Uab = exp[iθ(ab† + a†b)] (13)

The output state from the beam-splitter is

Uab|γ〉a|β〉b = | cos θγ + i sin θβ〉a| cos θβ + i sin θγ〉b (14)

If both output beams are now projected back into the qubit space of | ± α〉 using teleportation we find for
an arbitrary input state ν| −α〉a| −α〉b +µ|α〉a| −α〉b + τ | −α〉a|α〉b + γ|α〉a|α〉b that the resultant state is

|Ψ〉out = eiθα2
ν| − α〉a| − α〉b + e−iθα2

µ|α〉a| − α〉b + e−iθα2
τ | − α〉a|α〉b + eiθα2

γ|α〉a|α〉b (15)

where as before we have assumed orthogonality of the qubit basis state and θ2α2 << 1. If we choose
φ = 2θα2 = π/2 then R(Z ⊗ Z,−π/2) operation implements a controlled phase gate. The output state is
of the form

ν| − α〉a| − α〉b − iµ|α〉a| − α〉b − iτ | − α〉a|α〉b + γ|α〉a|α〉b (16)

which up to single qubit rotations is a simply a two qubit controlled phase gate.

Both of these two qubit phase gates can use to entangle input qubits and hence with our set of single qubit
gates form a universal set of operations for quantum logic. Such gates hence can be used for both quantum
computation and communication. They also can be used in various quantum metro-logical applications which
we will discuss next.

4. QUANTUM METROLOGY

In this section we illustrate the utility of the Schrodinger cat states for these two specific metrology applications.
We begin with the detection of weak forces.

4.1. The detection of weak forces

Before we begin our discussion of the application of Schrodinger cats states to weak force detection it is essential
to establish the best classical limit. It is well known that when a classical force given by F (t) acts for a fixed
time on a simple harmonic oscillator, it displaces the complex amplitude of this oscillator in phase space. The
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resulting amplitude and phase of the displacement are determined by the time dependence of the force.17 This
displacement can be represented by the unitary operator

D(α) = exp(αa† − α∗a) (17)

where α is a complex amplitude which determines the average field amplitude and a, a† are the annihilation and
creation operators for the single mode of the electromagnetic field. If the oscillator begins in a coherent state |α0〉
(with α0 is real) then a displacement D(iε) (assumed for simplicity to be orthogonal to the coherent amplitude
of the initial state) causes the coherent state to evolve to eiεα0 |α0 + iε〉. When can this state be The maximum
signal to noise ratio is then SNR = S/

√
V = 2ε. This must be greater than unity for the displacement to be

resolved and hence establishes the standard quantum limit (SQL)1 of εSQL ≥ 1/2.

It is well known that this limit may be overcome if the oscillator is prepared in a non-classical state. What
however is the sensitivity achieved by (1) and does this reach the ultimate limit, the Heisenberg limit. When a
weak classical force acts on the even photon number cat state |α〉 + | − α〉 with alpha real (see Fig (8a)) it is
displaced to

|φ〉out ≈ 1√
2

(
eiεα|α〉 + e−iεα| − α〉) (18)

Our problem is thus reduced to finding the optimal readout to be able to distinguish (18) from |α〉 + | − α〉.
The theory of optimal parameter estimation18 indicates that the limit on the precision with which the parameter
εα can be determined is (δθ)2 ≥ 1/V ar(σ̂x)in where V ar(σ̂x)in is the variance in the generator of the rotation
in the input state |α〉 + | − α〉. In this case the variance is simply unity. It thus follows that the minimum
detectable force is ε ≥ 1/2

√
n̄ where n̄ is the mean photon number given by n̄ = |α|2. It is straight forward to

show this ’measurement’ is the Heisenberg limit for a displacement measurement. An interesting question what
type of measurement is required to achieve this limit. In effect we need to be able to distinguish the even parity
cat state from the odd parity cat state. Currently this experimentally challenging. However by performing a
Hadamard operation (one of the single qubit gates discussed previously), the even and odd schrodinger cats are
transformed to the coherent states |α〉 from | − α〉 which can be easily distinguished via a standard homodyne
measurement.

If the weak force acts over a reason spatial range it would be possible to have a number of spatial mode of
light. Could this help us exceed the limit above even if we constraint the total mean photon number of the entire
multimode system. We depict in Fig (8b) a schematic for the setup of a proposed experiment. A single mode
cat state |α〉 + | − α〉 is input into one mode of an N port symmetric beam-splitter with the remaining input
ports empty. The output state from this beam-splitter is then the massively entangled GHZ like state

|ψ〉 =
1√
2

[
| α√

N
,

α√
N

, . . . ,
α√
N

〉 + | − α√
N

,− α√
N

, . . . ,− α√
N

〉
]

(19)

which has a total mean photon number of ntot = |α|2. We now assume that the weak force acts simultaneously
on all modes of this N party entangled state displacing them each by an amount D(iε) (for ε � 1). The resulting
state after the action of the force is

|ψ(θ)〉 =
1√
2

[
ei

√
Nεα| α√

N
, . . . ,

α√
N

〉 + e−i
√

Nεα| − α√
N

, . . . ,− α√
N

〉
]
. (20)

The theory of optimal parameter estimation indicates that the limit on the precision with which the displacement
parameter ε be estimated is bounded by

εmin =
1√

N [1 + 4ntot]
∼ 1

2
√
Nntot

for ntot � 1. If however we had used N independent cat state each with a photon number ntot/N then then
εmin for the entire system would have scaled as εmin ∼ 1/

√
4ntot which is the same result we obtained for the
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|0〉 |0〉

|α〉+|-α〉 D(iε)

|α〉+|-α〉 eiN1/2 θα |α〉+ e-iN1/2 θα |-α〉

eiθα|α〉+e-iθα|-α〉

D(iε){ }

a)

b)weak force

weak force

N port BS

Figure 8. Schematic diagram of the action of a weak force causing a displacement D(iε) on a Schrodinger cats state
|α〉+ | − α〉. In a) a single mode case is illustrated while in b) an N mode situation is considered.

single mode case. For large ntot, the preferred regime to work in, we find that the N mode entangled situation
gives an extra

√
N improvement over the single mode cat situation for the same total mean photon number.

Now how do we interpret such results? The effect that we are seeing is due to the weak force acting equally on
all N modes and the state between the N port beam-splitters being highly entangled. Does this result however
violate the Heisenberg limit of 1/

√
ntot which we previously mentioned. The answer is no! A careful analysis

using parameter estimation of this multimode situation indicates that our result is at the Heisenberg limit. For
displacement measurements the Heisenberg limit does depend on the number of modes.

Our results indicate that subject to the spatial bandwidth of the weak classical force it seems optimal for a
cat state with fixed mean photon ntot to split it and entangle it over as many modes as feasible. This in the
absence of loss give the best sensitivity. Such techniques are likely to work for other non classical continuous
variable states.

4.2. High precision phase measurements

The second metro-logical example we are going to investigate is the estimation of phase. The classic situation
to consider is Ramsey fringe interferometry which was first introduced by Bollinger et al.14 in the mid ninety’s.
In Ramsey fringe interferometry the objective is to detect the relative phase difference between two superposed
qubit basis states |0〉 and |1〉. This phase difference problem reduces to a quantum parameter estimation situation
in which a unitary transformation U(θ) = exp[iθẐ] (with Ẑ = |1〉〈1| − |0〉〈0|) induces a relative phase in the
specified basis. For example, an initial state of the form c0|0〉 + c1|1〉 evolves to c0e

−iθ|0〉 + c1e
iθ|1〉 under

the above unitary operation. When can we distinguish these two states. Is there an optimal choice of initial
state? The theory of quantum parameter estimation18 indicates for this situation that we should choose the
initial state as |ψ〉i = (|0〉+ |1〉)/√2 and that the optimal measurement is a projective measurement in the basis
|±〉 = |0〉±|1〉. The probability to obtain the result + is P (+|θ) = cos2 θ. For N repetitions of this measurement
the uncertainty in the inferred parameter θ is δθ = 1/

√
N . This is known as the standard quantum limit. It was

noted by Bollinger et al.14 that a more effective way to use the N two level systems is to first prepare them in
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the maximally entangled state,

|ψ〉 =
1√
2
(|0〉1|0〉2 . . . |0〉N + |1〉1|1〉2 . . . |1〉N ) (21)

and then subject the entire state to the unitary transformation U(θ) =
∏N

i=1 exp(−iθẐi). After the unitary
transformation the state (21) evolves to

|ψ〉 =
1√
2
(exp(−iNθ)|0〉1|0〉2 . . . |0〉N + exp(iNθ)|1〉1|1〉2 . . . |1〉N ) (22)

The uncertainty in the parameter estimation of θ then achieves the Heisenberg lower limit of

δθ =
1
N

(23)

This would seem to indicate like in the weak force case that entanglement is a critical requirement to achieve
the improved sensitivity. Let us examine this point a little further for the phase estimation situation. The Hilbert
space of N two level systems is a tensor product space of dimension 2N . The entangled state given in Eq.(21) how-
ever resides in a much smaller N+1 dimensional irreducible lower dimensional subspace of permutation symmetric
states.19 We may use an SU(2) representation to write the entangled state 0〉1|0〉2 . . . |0〉N + |1〉1|1〉2 . . . |1〉N in
the form

|ψ〉 =
1√
2
(| −N/2〉N/2 + |N/2〉N/2). (24)

This is just an SU(2) ‘cat state’ for N two-level atoms. Hence a single N level atom can achieve the same phase
sensitivity as a maximally entangled GHZ state as it can be written in the form | −N/2〉N/2 + |N/2〉N/2. This
would also seem to indicate that a superposition of coherent states (a cat state) can attend the same phase
resolution. In Fig (9) a schematic diagram is shown for the cat state obtaining the Heisenberg limited phase

|-α〉+|α〉
D(−α)D(α)

e-i2θα2|-α〉+ei2θα2|α〉e-iθa+a

Phase Shift

Figure 9. Schematics of quantum circuit illustrating how a phase shift can be seen on an input state of the form

resolution. Such phase shift could be used resolve precisely very small length intervals, a quantum ruler20 in
effect. As α increases, a number of high visibility, narrowly spaced fringes emerge, which could enable very short
length intervals to be accurately measured. As an example suppose our laser wavelength is 10µm. In a standard
interferometer this would enable length intervals of 5µm to be stepped off. However using the cat-state technique
with an α of 10 leads to the fringe separation being reduced to 1µm.

Finally let us return to the question about whether entanglement is necessary to achieve a Heisenberg limited
phase measurement. Obviously entanglement is not necessary but what entanglement allows is for one to create
an effective cat state without the need of resorting to create a superposition between the ground state and a
highly excited one.
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5. CONCLUDING REMARKS

In the paper we have investigated the utility of superpositions of coherent states. We have presented a quantum
computation scheme based on encoding qubits as coherent states, and their superposition. The optical networks
required are conceptually simple and require only linear interactions, homodyne measurements and photon
counting. We have concentrated on the simplest implementation which unfortunately requires large α. However
with a modest increase in complexity the non-deterministic operation of the gates at low α can form the basis
of a scalable system which will be detailed in a future publication.21 We have then shown how superpositions
of coherent states can be used to achieve extremely sensitive force detection and phase measurements.
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