334 research outputs found
Constraining dark energy models using the lookback time to galaxy clusters and the age of the universe
An impressive amount of different astrophysical data converges towards the
picture of a spatially flat universe undergoing a today phase of accelerated
expansion. The nature of the dark energy dominating the energy content of the
universe is still unknown and a lot of different scenarios are viable
candidates to explain cosmic acceleration. Most of the methods employed to test
these cosmological models are essentially based on distance measurements to a
particular class of objects. A different method, based on the lookback time to
galaxy clusters and the age of the universe, is used here. In particular, we
constrain the characterizing parameters of three classes of dark energy
cosmological models to see whether they are in agreement with this kind of
data, based on time measurements rather than distance observations.Comment: 13 pages, 8 figures, accepted for publication on Physical Review
Status of Salerno Laboratory (Measurements in Nuclear Emulsion)
A report on the analysis work in the Salerno Emulsion Laboratory is
presented. It is related to the search for nu_mu->nu_tau oscillations in CHORUS
experiment, the calibrations in the WANF (West Area Neutrino Facility) at Cern
and tests and preparation for new experiments.Comment: Proc. The First International Workshop of Nuclear Emulsion Techniques
(12-24 June 1998, Nagoya, Japan), 15 pages, 11 figure
Rotating Electromagnetic Waves in Toroid-Shaped Regions
Electromagnetic waves, solving the full set of Maxwell equations in vacuum,
are numerically computed. These waves occupy a fixed bounded region of the
three dimensional space, topologically equivalent to a toroid. Thus, their
fluid dynamics analogs are vortex rings. An analysis of the shape of the
sections of the rings, depending on the angular speed of rotation and the major
diameter, is carried out. Successively, spherical electromagnetic vortex rings
of Hill's type are taken into consideration. For some interesting peculiar
configurations, explicit numerical solutions are exhibited.Comment: 27 pages, 40 figure
An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method
In this paper we propose a collocation method for solving some well-known
classes of Lane-Emden type equations which are nonlinear ordinary differential
equations on the semi-infinite domain. They are categorized as singular initial
value problems. The proposed approach is based on a Hermite function
collocation (HFC) method. To illustrate the reliability of the method, some
special cases of the equations are solved as test examples. The new method
reduces the solution of a problem to the solution of a system of algebraic
equations. Hermite functions have prefect properties that make them useful to
achieve this goal. We compare the present work with some well-known results and
show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications
Recommended from our members
A Veritable Menagerie of Heritable Bacteria from Ants, Butterflies, and Beyond: Broad Molecular Surveys and a Systematic Review
Maternally transmitted bacteria have been important players in the evolution of insects and other arthropods, affecting their nutrition, defense, development, and reproduction. Wolbachia are the best studied among these and typically the most prevalent. While several other bacteria have independently evolved a heritable lifestyle, less is known about their host ranges. Moreover, most groups of insects have not had their heritable microflora systematically surveyed across a broad range of their taxonomic diversity. To help remedy these shortcomings we used diagnostic PCR to screen for five groups of heritable symbionts—Arsenophonus spp., Cardinium hertigii, Hamiltonella defensa, Spiroplasma spp., and Wolbachia spp.—across the ants and lepidopterans (focusing, in the latter case, on two butterfly families—the Lycaenidae and Nymphalidae). We did not detect Cardinium or Hamiltonella in any host. Wolbachia were the most widespread, while Spiroplasma (ants and lepidopterans) and Arsenophonus (ants only) were present at low levels. Co-infections with different Wolbachia strains appeared especially common in ants and less so in lepidopterans. While no additional facultative heritable symbionts were found among ants using universal bacterial primers, microbes related to heritable enteric bacteria were detected in several hosts. In summary, our findings show that Wolbachia are the dominant heritable symbionts of ants and at least some lepidopterans. However, a systematic review of symbiont frequencies across host taxa revealed that this is not always the case across other arthropods. Furthermore, comparisons of symbiont frequencies revealed that the prevalence of Wolbachia and other heritable symbionts varies substantially across lower-level arthropod taxa. We discuss the correlates, potential causes, and implications of these patterns, providing hypotheses on host attributes that may shape the distributions of these influential bacteria.Organismic and Evolutionary Biolog
Numerical Approximations Using Chebyshev Polynomial Expansions
We present numerical solutions for differential equations by expanding the
unknown function in terms of Chebyshev polynomials and solving a system of
linear equations directly for the values of the function at the extrema (or
zeros) of the Chebyshev polynomial of order N (El-gendi's method). The
solutions are exact at these points, apart from round-off computer errors and
the convergence of other numerical methods used in connection to solving the
linear system of equations. Applications to initial value problems in
time-dependent quantum field theory, and second order boundary value problems
in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate
Second order averaging for the nonlinear Schroedinger equation with strongly anisotropic potential
International audienceWe consider the three dimensional Gross-Pitaevskii equation (GPE) describing a Bose-Einstein Condensate (BEC) which is highly confi ned in vertical z direction. The highly confi ned potential induces high oscillations in time. If the confi nement in the z direction is a harmonic trap (which is widely used in physical experiments), the very special structure of the spectrum of the confi nement operator will imply that the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out with an error of order of epsilon, which is the typical period of the oscillations. In this article, we construct a more accurate averaged model, which approximates the GPE up to errors of order epsilon squared. Then, expansions of this model over the eigenfunctions (modes) of the vertical Hamiltonian Hz are given in convenience of numerical application. Effi cient numerical methods are constructed for solving the GPE with cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are presented for various kinds of initial data
Contribution of NADPH Oxidase to Membrane CD38 Internalization and Activation in Coronary Arterial Myocytes
The CD38-ADP-ribosylcyclase-mediated Ca2+ signaling pathway importantly contributes to the vasomotor response in different arteries. Although there is evidence indicating that the activation of CD38-ADP-ribosylcyclase is associated with CD38 internalization, the molecular mechanism mediating CD38 internalization and consequent activation in response to a variety of physiological and pathological stimuli remains poorly understood. Recent studies have shown that CD38 may sense redox signals and is thereby activated to produce cellular response and that the NADPH oxidase isoform, NOX1, is a major resource to produce superoxide (O2·−) in coronary arterial myocytes (CAMs) in response to muscarinic receptor agonist, which uses CD38-ADP-ribosylcyclase signaling pathway to exert its action in these CAMs. These findings led us hypothesize that NOX1-derived O2·− serves in an autocrine fashion to enhance CD38 internalization, leading to redox activation of CD38-ADP-ribosylcyclase activity in mouse CAMs. To test this hypothesis, confocal microscopy, flow cytometry and a membrane protein biotinylation assay were used in the present study. We first demonstrated that CD38 internalization induced by endothelin-1 (ET-1) was inhibited by silencing of NOX1 gene, but not NOX4 gene. Correspondingly, NOX1 gene silencing abolished ET-1-induced O2·− production and increased CD38-ADP-ribosylcyclase activity in CAMs, while activation of NOX1 by overexpression of Rac1 or Vav2 or administration of exogenous O2·−significantly increased CD38 internalization in CAMs. Lastly, ET-1 was found to markedly increase membrane raft clustering as shown by increased colocalization of cholera toxin-B with CD38 and NOX1. Taken together, these results provide direct evidence that Rac1-NOX1-dependent O2·− production mediates CD38 internalization in CAMs, which may represent an important mechanism linking receptor activation with CD38 activity in these cells
Effect of dietary thymol supplementation on lipid oxidation of chicken legs as related to storage conditions
The aim of this research was to evaluate the effect of dietary thymol supplementation on lipid oxidation of chicken leg meat during refrigerated shelf-life. Chickens belonging to Ross 308 hybrid were raised under experimental conditions up to 3 kg of live weight, using three dietary treatments: control (without supplementation, C), treatment 1 (C+0.1% w/w thymol supplementation, T1) and treatment 2 (C+0.2% w/w thymol supplementation, T2). After slaughtering, the chicken legs with skin were stored under conventional (CON) and modified atmosphere (MAP) at temperature of 2-4°C for 14 days. Lipid oxidation was monitored by the determination of primary (peroxide value, PV) and secondary (thiobarbituric acid reactive substances, TBARs) products at 3, 7, 10 and 14 days of storage under both CON and MAP conditions and compared with values found on fresh meat. The three different dietary treatments did not significantly affect the lipid oxidation parameters. PV ranged between 0.5-13.0, 0.7-13.0 and 1.0-11.0 meq O2/kg of lipid in poultry meat obtained with C, T1 and T2 diets, respectively. TBARs varied between 0.1-0.7, 0.1- 0.6 and 0.2-0.5 mg MDA/kg of meat in poultry meat obtained with C, T1 and T2 diets, respectively. On the other hand, interaction effect of diets and storage conditions were significant (P≤0.05) in PV formation, as it was delayed under MAP (maximum PV level after 2 and 5 days of storage in C and thymol-containing diets, respectively) with respect to conventional storage (PV apex after 2 days of storage). However, not significant differences (P≥0.05) were found on TBARs level as related to storage conditions. In conclusion, this study demonstrated that dietary thymol supplementation coupled to MAP storage conditions delay lipid oxidation of chicken legs with skin, thus improving their shelf-life
- …
