337 research outputs found

    A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore

    Get PDF
    The function of chemical signalling in non-territorial solitary carnivores is still relatively unclear. Studies on territorial solitary and social carnivores have highlighted odour capability and utility, however the social function of chemical signalling in wild carnivore populations operating dominance hierarchy social systems has received little attention. We monitored scent marking and investigatory behaviour of wild brown bears Ursus arctos, to test multiple hypotheses relating to the social function of chemical signalling. Camera traps were stationed facing bear ‘marking trees’ to document behaviour by different age sex classes in different seasons. We found evidence to support the hypothesis that adult males utilise chemical signalling to communicate dominance to other males throughout the non-denning period. Adult females did not appear to utilise marking trees to advertise oestrous state during the breeding season. The function of marking by subadult bears is somewhat unclear, but may be related to the behaviour of adult males. Subadults investigated trees more often than they scent marked during the breeding season, which could be a result of an increased risk from adult males. Females with young showed an increase in marking and investigation of trees outside of the breeding season. We propose the hypothesis that females engage their dependent young with marking trees from a young age, at a relatively ‘safe’ time of year. Memory, experience, and learning at a young age, may all contribute towards odour capabilities in adult bears

    Search for Neutrinoless Double-Beta Decay of 130^{130}Te with CUORE-0

    Get PDF
    We report the results of a search for neutrinoless double-beta decay in a 9.8~kg⋅\cdotyr exposure of 130^{130}Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV5.1\pm 0.3{\rm~keV} FWHM and 0.058±0.004 (stat.)±0.002 (syst.)0.058 \pm 0.004\,(\mathrm{stat.})\pm 0.002\,(\mathrm{syst.})~counts/(keV⋅\cdotkg⋅\cdotyr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is 2.9×1024 yr2.9\times 10^{24}~{\rm yr} and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130^{130}Te and place a Bayesian lower bound on the decay half-life, T1/20Îœ>T^{0\nu}_{1/2}>~2.7×1024 yr 2.7\times 10^{24}~{\rm yr} at 90%~C.L. Combining CUORE-0 data with the 19.75~kg⋅\cdotyr exposure of 130^{130}Te from the Cuoricino experiment we obtain T1/20Îœ>4.0×1024 yrT^{0\nu}_{1/2} > 4.0\times 10^{24}~\mathrm{yr} at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mÎČÎČ<270m_{\beta\beta}< 270 -- 760 meV760~\mathrm{meV}.Comment: 6 pages, 5 figures, updated version as published in PR

    CUORE-0 results and prospects for the CUORE experiment

    Full text link
    With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014, 26th International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, held at Boston, Massachusetts, US

    Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    Get PDF
    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.Comment: 7 pages, 4 figures, to be published in the proceedings of ICHEP 2014, 37th International Conference on High Energy Physics, Valencia (Spain) 2-9 July 201

    CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

    Get PDF
    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130^{130}Te. With 741 kg of TeO2_2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6×10261.6\times 10^{26} y at 1σ1\sigma (9.5×10259.5\times10^{25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130^{130}Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc

    Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Get PDF
    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ

    Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz

    Get PDF
    Observations of the Galactic Center supermassive black hole Sagittarius A* (Sgr A*) with very long baseline interferometry (VLBI) are affected by interstellar scattering along our line of sight. At long radio observing wavelengths (≳1 \gtrsim1\,cm), the scattering heavily dominates image morphology. At 3.5 mm (86 GHz), the intrinsic source structure is no longer sub-dominant to scattering, and thus the intrinsic emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). Long-baseline detections to the phased Atacama Large Millimeter/submillimeter Array (ALMA) in 2017 provided new constraints on the intrinsic and scattering properties of Sgr A*, but the stochastic nature of the scattering requires multiple observing epochs to reliably estimate its statistical properties. We present new observations with the GMVA+ALMA, taken in 2018, which confirm non-Gaussian structure in the scattered image seen in 2017. In particular, the ALMA-GBT baseline shows more flux density than expected for an anistropic Gaussian model, providing a tight constraint on the source size and an upper limit on the dissipation scale of interstellar turbulence. We find an intrinsic source extent along the minor axis of ∌100 Ό\sim100\,\muas both via extrapolation of longer wavelength scattering constraints and direct modeling of the 3.5 mm observations. Simultaneously fitting for the scattering parameters, we find an at-most modestly asymmetrical (major-to-minor axis ratio of 1.5±0.21.5\pm 0.2) intrinsic source morphology for Sgr A*.Comment: 18 pages, 10 figures, submitted to Ap

    Reference Array and Design Consideration for the next-generation Event Horizon Telescope

    Full text link
    We describe the process to design, architect, and implement a transformative enhancement of the Event Horizon Telescope (ngEHT). This program - the next-generation Event Horizon Telescope (ngEHT) - will form a networked global array of radio dishes capable of making high-fidelity real-time movies of supermassive black holes (SMBH) and their emanating jets. This builds upon the EHT principally by deploying additional modest-diameter dishes to optimized geographic locations to enhance the current global mm/submm wavelength Very Long Baseline Interferometric (VLBI) array, which has, to date, utilized mostly pre-existing radio telescopes. The ngEHT program further focuses on observing at three frequencies simultaneously for increased sensitivity and Fourier spatial frequency coverage. Here, the concept, science goals, design considerations, station siting and instrument prototyping are discussed, and a preliminary reference array to be implemented in phases is described.Comment: Submitted to the journal Galaxie

    Polarimetry and Astrometry of NIR Flares as Event Horizon Scale, Dynamical Probes for the Mass of Sgr A*

    Full text link
    We present new astrometric and polarimetric observations of flares from Sgr A* obtained with GRAVITY, the near-infrared interferometer at ESO's Very Large Telescope Interferometer (VLTI), bringing the total sample of well-covered astrometric flares to four and polarimetric ones to six, where we have for two flares good coverage in both domains. All astrometric flares show clockwise motion in the plane of the sky with a period of around an hour, and the polarization vector rotates by one full loop in the same time. Given the apparent similarities of the flares, we present a common fit, taking into account the absence of strong Doppler boosting peaks in the light curves and the EHT-measured geometry. Our results are consistent with and significantly strengthen our model from 2018: We find that a) the combination of polarization period and measured flare radius of around nine gravitational radii (9Rg≈1.5RISCO9 R_g \approx 1.5 R_{ISCO}, innermost stable circular orbit) is consistent with Keplerian orbital motion of hot spots in the innermost accretion zone. The mass inside the flares' radius is consistent with the 4.297×106  M⊙4.297 \times 10^6 \; \text{M}_\odot measured from stellar orbits at several thousand RgR_g. This finding and the diameter of the millimeter shadow of Sgr A* thus support a single black hole model. Further, b) the magnetic field configuration is predominantly poloidal (vertical), and the flares' orbital plane has a moderate inclination with respect to the plane of the sky, as shown by the non-detection of Doppler-boosting and the fact that we observe one polarization loop per astrometric loop. Moreover, c) both the position angle on sky and the required magnetic field strength suggest that the accretion flow is fueled and controlled by the winds of the massive, young stars of the clockwise stellar disk 1-5 arcsec from Sgr A*, in agreement with recent simulations.Comment: 10 pages, 12 figures. Submitted to A&
    • 

    corecore