2,327 research outputs found

    Magnetospheric convection from Cluster EDI measurements compared with the ground-based ionospheric convection model IZMEM

    Get PDF
    Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for more than seven and a half years (2001–2008) have been used to derive a statistical model of the high-latitude electric potential distribution for summer conditions. Based on potential pattern for different orientations of the interplanetary magnetic field (IMF) in the GSM y-z-plane, basic convection pattern (BCP) were derived, that represent the main characteristics of the electric potential distribution in dependence on the IMF. The BCPs comprise the IMF-independent potential distribution as well as patterns, which describe the dependence on positive and negative IMF<I>B<sub>z</sub></I> and IMF<I>B<sub>y</sub></I> variations. The full set of BCPs allows to describe the spatial and temporal variation of the high-latitude electric potential (ionospheric convection) for any solar wind IMF condition near the Earth's magnetopause within reasonable ranges. The comparison of the Cluster/EDI model with the IZMEM ionospheric convection model, which was derived from ground-based magnetometer observations, shows a good agreement of the basic patterns and its variation with the IMF. According to the statistical models, there is a two-cell antisunward convection within the polar cap for northward IMF<I>B<sub>z</sub></I>+≤2 nT, while for increasing northward IMF<I>B<sub>z</sub></I>+ there appears a region of sunward convection within the high-latitude daytime sector, which assumes the form of two additional cells with sunward convection between them for IMF<I>B<sub>z</sub></I>+≈4–5 nT. This results in a four-cell convection pattern of the high-latitude convection. In dependence of the ±IMF<I>B<sub>y</sub></I> contribution during sufficiently strong northward IMF<I>B<sub>z</sub></I> conditions, a transformation to three-cell convection patterns takes place

    Energy conversion at the Earth's magnetopause using single and multispacecraft methods

    Get PDF
    We present a small statistical data set, where we investigate energy conversion at the magnetopause using Cluster measurements of magnetopause crossings. The Cluster observations of magnetic field, plasma velocity, current density and magnetopause orientation are needed to infer the energy conversion at the magnetopause. These parameters can be inferred either from accurate multispacecraft methods, or by using single-spacecraft methods. Our final aim is a large statistical study, for which only single-spacecraft methods can be applied. The Cluster mission provides an opportunity to examine and validate single-spacecraft methods against the multispacecraft methods. For single-spacecraft methods, we use the Generic Residue Analysis (GRA) and a standard one-dimensional current density method using magnetic field measurements. For multispacecraft methods, we use triangulation (Constant Velocity Approach - CVA) and the curlometer technique. We find that in some cases the single-spacecraft methods yield a different sign for the energy conversion than compared to the multispacecraft methods. These sign ambiguities arise from the orientation of the magnetopause, choosing the interval to be analyzed, large normal current and time offset of the current density inferred from the two methods. By using the Finnish Meteorological Institute global MHD simulation GUMICS-4, we are able to determine which sign is likely to be correct, introducing an opportunity to correct the ambiguous energy conversion values. After correcting the few ambiguous cases, we find that the energy conversion estimated from single-spacecraft methods is generally lower by 70% compared to the multispacecraft methods.Peer reviewe

    Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Get PDF
    In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM) or the Electric Field Experiment (EFW) instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.<br><br> <b>Key words.</b> Magnetospheric physics (magnetopause, cusp and boundary layers; instruments and techniques) – Space plasma physics (discontinuities

    Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow

    Get PDF
    This article describes observations of a bursty bulk flow (BBF) in the outer central plasma sheet. The observations are made with the Cluster satellites, located approximately 19 <I>R<sub>E</sub></I> downtail, close to the midnight sector in the Southern Hemisphere. 40–60 s after Cluster first detected the BBF, there was a large bipolar perturbation in the magnetic field. A Grad-Shafranov reconstruction has revealed that this is created by a field-aligned current at the flank of the BBF. Further analysis of the plasma moments has shown that the BBF has the properties of a depleted flux tube. Depleted flux tubes are an important theoretical model for how plasma and magnetic flux can be transported Earthward in the magnetotail as part of the Dungey cycle. The field aligned current is directed Earthward and is located at the dawn side of the BBF. Thus, it is consistent with the magnetic shear at the flank of an Earthward moving BBF. The total current has been estimated to be about 0.1 MA

    Liquid electrolytes for lithium-ion accumulators

    Get PDF
    Cieľom tejto diplomovej práce bolo meranie elektrickej vodivosti a dynamickej viskozity elektrolytov. Na základe týchto meraní bolo možné overiť Waldenov vzťah medzi meranými veličinami. Boli použité elektrolyty na bázy sulfolanu v kombinácií s propylenkarbonátom a so soľou. Diplomová práca sa tiež zaoberá meraním dielektrických vlastností elektrickou metódou a optickou metódou pomocou refraktometrie. Taktiež boli stanovené body tuhnutia zmesi sulfolanu a propylenkarbonátu pomocou kryoskopie.The aim of this master´s thesis was the measurement of electrical conductivity and dynamic viscosity of the electrolytes. Based on these measurements to verify Walden theorem between measured variables. Electrolytes were used on sulfolane base in combination with propylene carbonate and salt. The thesis also deals with the measuring method of dielectric properties of electrical and optical method with a refractometer. The freezing point of combination of sulfolan and propylene carbonate were determined by cryoscopy.

    Dynamic effects of restoring footpoint symmetry on closed magnetic field lines

    Get PDF
    Here we present an event where simultaneous global imaging of the aurora from both hemispheres reveals a large longitudinal shift of the nightside aurora of about 3 h, being the largest relative shift reported on from conjugate auroral imaging. This is interpreted as evidence of closed field lines having very asymmetric footpoints associated with the persistent positive y component of the interplanetary magnetic field before and during the event. At the same time, the Super Dual Auroral Radar Network observes the ionospheric nightside convection throat region in both hemispheres. The radar data indicate faster convection toward the dayside in the dusk cell in the Southern Hemisphere compared to its conjugate region. We interpret this as a signature of a process acting to restore symmetry of the displaced closed magnetic field lines resulting in flux tubes moving faster along the banana cell than the conjugate orange cell. The event is analyzed with emphasis on Birkeland currents (BC) associated with this restoring process, as recently described by Tenfjord et al. (2015). Using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during the same conditions as the presented event, the large-scale BC pattern associated with the event is presented. It shows the expected influence of the process of restoring symmetry on BCs. We therefore suggest that these observations should be recognized as being a result of the dynamic effects of restoring footpoint symmetry on closed field lines in the nightside

    How the IMF By\mathit{B}_{y} Induces a Local By\mathit{B}_{y} Component During Northward IMF Bz\mathit{B}_{z} and Characteristic Timescales

    Full text link
    We use the Lyon-Fedder-Mobarry global magnetohydrodynamics model to study the effects of the interplanetary magnetic field (IMF) By\mathit{B}_{y} component on the coupling between the solar wind and magnetosphere-ionosphere system when IMF Bz\mathit{B}_{z} >>0. We describe the evolution of how a magnetospheric By\mathit{B}_{y} component is induced on closed field lines during these conditions. Starting from dayside lobe reconnection, the magnetic tension on newly reconnected field lines redistribute the open flux asymmetrically between the two hemispheres. This results in asymmetric magnetic energy density in the lobes. Shear flows are induced to restore equilibrium, and these flows are what effectively induces a local By\mathit{B}_{y} component. We show the radial dependence of the induced By\mathit{B}_{y} and compare the results to the induced By\mathit{B}_{y} during southward IMF conditions. We also show the response and reconfiguration time of the inner magnetosphere to IMF By\mathit{B}_{y} reversals during northward IMF Bz\mathit{B}_{z}. A superposed epoch analysis of magnetic field measurements from seven Geostationary Operational Environmental Satellite spacecraft at different local times both for negative-to-positive and positive-to-negative IMF By\mathit{B}_{y} reversals is presented. We find that the induced By\mathit{B}_{y} responds within 16 min of the arrival of IMF By\mathit{B}_{y} at the bow shock, and it completely reconfigures within 47 min
    corecore