481 research outputs found
Formation of regulatory modules by local sequence duplication
Turnover of regulatory sequence and function is an important part of
molecular evolution. But what are the modes of sequence evolution leading to
rapid formation and loss of regulatory sites? Here, we show that a large
fraction of neighboring transcription factor binding sites in the fly genome
have formed from a common sequence origin by local duplications. This mode of
evolution is found to produce regulatory information: duplications can seed new
sites in the neighborhood of existing sites. Duplicate seeds evolve
subsequently by point mutations, often towards binding a different factor than
their ancestral neighbor sites. These results are based on a statistical
analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome,
and a comparison set of intergenic regulatory sequence in Saccharomyces
cerevisiae. In fly regulatory modules, pairs of binding sites show
significantly enhanced sequence similarity up to distances of about 50 bp. We
analyze these data in terms of an evolutionary model with two distinct modes of
site formation: (i) evolution from independent sequence origin and (ii)
divergent evolution following duplication of a common ancestor sequence. Our
results suggest that pervasive formation of binding sites by local sequence
duplications distinguishes the complex regulatory architecture of higher
eukaryotes from the simpler architecture of unicellular organisms
Correction: AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community
Evidence for Pervasive Adaptive Protein Evolution in Wild Mice
The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans
A systematic, large-scale comparison of transcription factor binding site models
Background The modelling of gene regulation is a major challenge in biomedical
research. This process is dominated by transcription factors (TFs) and
mutations in their binding sites (TFBSs) may cause the misregulation of genes,
eventually leading to disease. The consequences of DNA variants on TF binding
are modelled in silico using binding matrices, but it remains unclear whether
these are capable of accurately representing in vivo binding. In this study,
we present a systematic comparison of binding models for 82 human TFs from
three freely available sources: JASPAR matrices, HT-SELEX-generated models and
matrices derived from protein binding microarrays (PBMs). We determined their
ability to detect experimentally verified “real” in vivo TFBSs derived from
ENCODE ChIP-seq data. As negative controls we chose random downstream exonic
sequences, which are unlikely to harbour TFBS. All models were assessed by
receiver operating characteristics (ROC) analysis. Results While the area-
under-curve was low for most of the tested models with only 47 % reaching a
score of 0.7 or higher, we noticed strong differences between the various
position-specific scoring matrices with JASPAR and HT-SELEX models showing
higher success rates than PBM-derived models. In addition, we found that while
TFBS sequences showed a higher degree of conservation than randomly chosen
sequences, there was a high variability between individual TFBSs. Conclusions
Our results show that only few of the matrix-based models used to predict
potential TFBS are able to reliably detect experimentally confirmed TFBS. We
compiled our findings in a freely accessible web application called ePOSSUM
(http:/mutationtaster.charite.de/ePOSSUM/) which uses a Bayes classifier to
assess the impact of genetic alterations on TF binding in user-defined
sequences. Additionally, ePOSSUM provides information on the reliability of
the prediction using our test set of experimentally confirmed binding sites
Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth
Background
The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target genes involved in human preterm birth, an area of global health significance.
Methods
We performed a comparative genomics screen of highly conserved noncoding elements and identified PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. To examine whether this gene demonstrating primate-specific evolution was associated with birth timing, we genotyped and analyzed 8 common single nucleotide polymorphisms (SNPs) in PLA2G4C in US Hispanic (n = 73 preterm, 292 control), US White (n = 147 preterm, 157 control) and US Black (n = 79 preterm, 166 control) mothers.
Results
Detailed structural and phylogenic analysis of PLA2G4C suggested a short genomic element within the gene duplicated from a paralogous highly conserved element on chromosome 1 specifically in primates. SNPs rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites were significant after correcting for multiple tests (p < 0.006). Additionally, rs11564620 (Thr360Pro) was associated with increased metabolite levels of the prostaglandin thromboxane in healthy individuals (p = 0.02), suggesting this variant may affect PLA2G4C activity.
Conclusions
Our findings suggest that variation in PLA2G4C may influence preterm birth risk by increasing levels of prostaglandins, which are known to regulate labor.Children’s Discovery InstituteMarch of Dimes Birth Defects FoundationNational Institute of General Medical Sciences (U.S.) (grant T32 GM081739)Washington University (Saint Louis, Mo.) (Mr. and Mrs. Spencer T. Olin Fellowship for Women in Graduate Study)Sigrid Jusélius FoundationSigne and Anne Gyllenberg FoundationAcademy of FinlandVanderbilt University (Turner-Hazinski grant award
Identifying genetic networks underlying myometrial transition to labor
BACKGROUND: Early transition to labor remains a major cause of infant mortality, yet the causes are largely unknown. Although several marker genes have been identified, little is known about the underlying global gene expression patterns and pathways that orchestrate these striking changes. RESULTS: We performed a detailed time-course study of over 9,000 genes in mouse myometrium at defined physiological states: non-pregnant, mid-gestation, late gestation, and postpartum. This dataset allowed us to identify distinct patterns of gene expression that correspond to phases of myometrial 'quiescence', 'term activation', and 'postpartum involution'. Using recently developed functional mapping tools (HOPACH (hierarchical ordered partitioning and collapsing hybrid) and GenMAPP 2.0), we have identified new potential transcriptional regulatory gene networks mediating the transition from quiescence to term activation. CONCLUSIONS: These results implicate the myometrium as an essential regulator of endocrine hormone (cortisol and progesterone synthesis) and signaling pathways (cyclic AMP and cyclic GMP stimulation) that direct quiescence via the transcripitional upregulation of both novel and previously associated regulators. With term activation, we observe the upregulation of cytoskeletal remodeling mediators (intermediate filaments), cell junctions, transcriptional regulators, and the coordinate downregulation of negative control checkpoints of smooth muscle contractile signaling. This analysis provides new evidence of multiple parallel mechanisms of uterine contractile regulation and presents new putative targets for regulating myometrial transformation and contraction
Consistency, comprehensiveness, and compatibility of pathway databases
<p>Abstract</p> <p>Background</p> <p>It is necessary to analyze microarray experiments together with biological information to make better biological inferences. We investigate the adequacy of current biological databases to address this need.</p> <p>Description</p> <p>Our results show a low level of consistency, comprehensiveness and compatibility among three popular pathway databases (KEGG, Ingenuity and Wikipathways). The level of consistency for genes in similar pathways across databases ranges from 0% to 88%. The corresponding level of consistency for interacting genes pairs is 0%-61%. These three original sources can be assumed to be reliable in the sense that the interacting gene pairs reported in them are correct because they are curated. However, the lack of concordance between these databases suggests each source has missed out many genes and interacting gene pairs.</p> <p>Conclusions</p> <p>Researchers will hence find it challenging to obtain consistent pathway information out of these diverse data sources. It is therefore critical to enable them to access these sources via a consistent, comprehensive and unified pathway API. We accumulated sufficient data to create such an aggregated resource with the convenience of an API to access its information. This unified resource can be accessed at <url>http://www.pathwayapi.com</url>.</p
Assessing phylogenetic motif models for predicting transcription factor binding sites
Motivation: A variety of algorithms have been developed to predict transcription factor binding sites (TFBSs) within the genome by exploiting the evolutionary information implicit in multiple alignments of the genomes of related species. One such approach uses an extension of the standard position-specific motif model that incorporates phylogenetic information via a phylogenetic tree and a model of evolution. However, these phylogenetic motif models (PMMs) have never been rigorously benchmarked in order to determine whether they lead to better prediction of TFBSs than obtained using simple position weight matrix scanning
Identity enactment as collective accomplishment:Religious identity enactment at home and at a festival
The authors wish to acknowledge the financial support of the ESRC (Grant # RES-062-23-1449).Much research addresses the proposition that identifying with a group shapes individuals’ behaviour. Typically, such research employs experimental or survey methods, measuring or manipulating social identification and relating this to various outcome variables. Although shedding much light on the processes involved in the identity–behaviour relationship, such research tends to overlook the various constraints that limit individuals’ abilities to act in accordance with their identities. Using interview data gathered in north India, we explore the factors affecting the enactment of a religious identity. More specifically, using data gathered at a religious mass gathering, we compare and contrast participants’ reports of identity enactment when they are at the event and when they are in their home villages. These two contexts differ in terms of their social organization, especially the degree to which they are marked by the presence of a shared identity. Exploring participants’ accounts of such differences in social organization, we consider the social processes that constrain or facilitate identity enactment. In so doing, our analysis contributes to a richer analysis of the identity–behaviour relationship.Publisher PDFPeer reviewe
- …
