390 research outputs found

    A new trial design to accelerate tuberculosis drug development : the Phase IIC Selection Trial with Extended Post-treatment follow-up (STEP)

    Get PDF
    The PanACEA consortium was funded by the European Developing Country Partnership through grants IP.2007.32011.011, IP.2007.32011.012, and IP.2007.32011.013. PN is supported by the NIAID of the National Institutes of Health (R01AI104589) and the TBTC. KED is supported by NIAID/NID (R01AI111992) and the TBTC.Background The standard 6-month four-drug regimen for the treatment of drug-sensitive tuberculosis has remained unchanged for decades and is inadequate to control the epidemic. Shorter, simpler regimens are urgently needed to defeat what is now the world’s greatest infectious disease killer. Methods We describe the Phase IIC Selection Trial with Extended Post-treatment follow-up (STEP) as a novel hybrid phase II/III trial design to accelerate regimen development. In the Phase IIC STEP trial, the experimental regimen is given for the duration for which it will be studied in phase III (presently 3 or 4 months) and patients are followed for clinical outcomes of treatment failure and relapse for a total of 12 months from randomisation. Operating characteristics of the trial design are explored assuming a classical frequentist framework as well as a Bayesian framework with flat and sceptical priors. A simulation study is conducted using data from the RIFAQUIN phase III trial to illustrate how such a design could be used in practice. Results With 80 patients per arm, and two (2.5 %) unfavourable outcomes in the STEP trial, there is a probability of 0.99 that the proportion of unfavourable outcomes in a potential phase III trial would be less than 12 % and a probability of 0.91 that the proportion of unfavourable outcomes would be less than 8 %. With six (7.5 %) unfavourable outcomes, there is a probability of 0.82 that the proportion of unfavourable outcomes in a potential phase III trial would be less than 12 % and a probability of 0.41 that it would be less than 8 %. Simulations using data from the RIFAQUIN trial show that a STEP trial with 80 patients per arm would have correctly shown that the Inferior Regimen should not proceed to phase III and would have had a high chance (0.88) of either showing that the Successful Regimen could proceed to phase III or that it might require further optimisation. Conclusions Collection of definitive clinical outcome data in a relatively small number of participants over only 12 months provides valuable information about the likelihood of success in a future phase III trial. We strongly believe that the STEP trial design described herein is an important tool that would allow for more informed decision-making and accelerate regimen development.Publisher PDFPeer reviewe

    Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial

    Get PDF
    Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832

    Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

    Get PDF
    New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide1, 2. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis3, 4, 5, several of which are currently in clinical trials6, 7, 8. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis

    Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis

    Get PDF
    Rationale: Sutezolid (PNU-100480) is a linezolid analog with superior bactericidal activity against Mycobacterium tuberculosis in the hollow fiber, whole blood and mouse models. Like linezolid, it is unaffected by mutations conferring resistance to standard TB drugs. This study of sutezolid is its first in tuberculosis patients. METHODS: Sputum smear positive tuberculosis patients were randomly assigned to sutezolid 600 mg BID (N = 25) or 1200 mg QD (N = 25), or standard 4-drug therapy (N = 9) for the first 14 days of treatment. Effects on mycobacterial burden in sputum (early bactericidal activity or EBA) were monitored as colony counts on agar and time to positivity in automated liquid culture. Bactericidal activity was also measured in ex vivo whole blood cultures (whole blood bactericidal activity or WBA) inoculated with M. tuberculosis H37Rv. RESULTS: All patients completed assigned treatments and began subsequent standard TB treatment according to protocol. The 90% confidence intervals (CI) for bactericidal activity in sputum over the 14 day interval excluded zero for all treatments and both monitoring methods, as did those for cumulative WBA. There were no treatment-related serious adverse events, premature discontinuations, or dose reductions due to laboratory abnormalities. There was no effect on the QT interval. Seven sutezolid-treated patients (14%) had transient, asymptomatic ALT elevations to 173±34 U/L on day 14 that subsequently normalized promptly; none met Hy's criteria for serious liver injury. CONCLUSIONS: The mycobactericidal activity of sutezolid 600 mg BID or 1200 mg QD was readily detected in sputum and blood. Both schedules were generally safe and well tolerated. Further studies of sutezolid in tuberculosis treatment are warranted. Trial Registration ClinicalTrials.gov NCT0122564

    Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis

    Get PDF
    BACKGROUND: The relationship between tuberculosis (TB), one of the leading infectious causes of death worldwide, and the microbiome, which is critical for health, is poorly understood. METHODS: To identify potential microbiome-host interactions, profiling of the oral, sputum and stool microbiota [n = 58 cases, n = 47 culture-negative symptomatic controls (SCs)] and whole blood transcriptome were done in pre-treatment presumptive pulmonary TB patients. This was a cross-sectional study. Microbiota were also characterised in close contacts of cases (CCCs, n = 73) and close contacts of SCs (CCSCs, n = 82) without active TB. FINDINGS: Cases and SCs each had similar α- and β-diversities in oral washes and sputum, however, β-diversity differed in stool (PERMANOVA p = 0•035). Cases were enriched with anaerobes in oral washes, sputum (Paludibacter, Lautropia in both) and stool (Erysipelotrichaceae, Blautia, Anaerostipes) and their stools enriched in microbial genes annotated as amino acid and carbohydrate metabolic pathways. In pairwise comparisons with their CCCs, cases had Megasphaera-enriched oral and sputum microbiota and Bifidobacterium-, Roseburia-, and Dorea-depleted stools. Compared to their CCSCs, SCs had reduced α-diversities and many differential taxa per specimen type. Cases differed transcriptionally from SCs in peripheral blood (PERMANOVA p = 0•001). A co-occurrence network analysis showed stool taxa, Erysipelotrichaceae and Blautia, to negatively co-correlate with enriched "death receptor" and "EIF2 signalling" pathways whereas Anaerostipes positively correlated with enriched "interferon signalling", "Nur77 signalling" and "inflammasome" pathways; all of which are host pathways associated with disease severity. In contrast, none of the taxa enriched in SCs correlated with host pathways. INTERPRETATION: TB-specific microbial relationships were identified in oral washes, induced sputum, and stool from cases before the confounding effects of antibiotics. Specific anaerobes in cases' stool predict upregulation of pro-inflammatory immunological pathways, supporting the gut microbiota's role in TB. FUNDING: European & Developing Countries Clinical Trials Partnership, South African-Medical Research Council, National Institute of Allergy and Infectious Diseases

    Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma

    Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development

    Get PDF
    Background: A critical step in tuberculosis (TB) drug development is the Phase 2a early bactericidal activity (EBA) study which informs if a new drug or treatment has short-term activity in humans. The aim of this work was to present a standardized pharmacometric model-based early bactericidal activity analysis workflow and determine sample sizes needed to detect early bactericidal activity or a difference between treatment arms.Methods: Seven different steps were identified and developed for a standardized pharmacometric model-based early bactericidal activity analysis approach. Non-linear mixed effects modeling was applied and different scenarios were explored for the sample size calculations. The sample sizes needed to detect early bactericidal activity given different TTP slopes and associated variability was assessed. In addition, the sample sizes needed to detect effect differences between two treatments given the impact of different TTP slopes, variability in TTP slope and effect differences were evaluated.Results: The presented early bactericidal activity analysis approach incorporates estimate of early bactericidal activity with uncertainty through the model-based estimate of TTP slope, variability in TTP slope, impact of covariates and pharmacokinetics on drug efficacy. Further it allows for treatment comparison or dose optimization in Phase 2a. To detect early bactericidal activity with 80% power and at a 5% significance level, 13 and 8 participants/arm were required for a treatment with a TTP-EBA0-14 as low as 11 h when accounting for variability in pharmacokinetics and when variability in TTP slope was 104% [coefficient of variation (CV)] and 22%, respectively. Higher sample sizes are required for smaller early bactericidal activity and when pharmacokinetics is not accounted for. Based on sample size determinations to detect a difference between two groups, TTP slope, variability in TTP slope and effect difference between two treatment arms needs to be considered.Conclusion: In conclusion, a robust standardized pharmacometric model-based EBA analysis approach was established in close collaboration between microbiologists, clinicians and pharmacometricians. The work illustrates the importance of accounting for covariates and drug exposure in EBA analysis in order to increase the power of detecting early bactericidal activity for a single treatment arm as well as differences in EBA between treatments arms in Phase 2a trials of TB drug development

    Greater early bactericidal activity at higher rifampicin doses revealed by modeling and clinical trial simulations

    Get PDF
    This work was supported by the Swedish Research Council (grant 521-2011-3442 to R. J. S. and U. S. H. S.), the Innovative Medicines Initiative Joint Undertaking (award 115337, with contribution from the European Union’s Seventh Framework Programme [FP7/2007–2013] and the European Federation of Pharmaceutical Industries and Associations [in-kind contribution]), the European and Developing Countries Clinical Trials Partnership (awards IP.2007.32011.011, IP.2007.32011.012, and IP.2007.32011.013), the Netherlands-African Partnership for Capacity Development and Clinical Interventions Against Poverty-Related Diseases, and the Bill and Melinda Gates Foundation.Background The currently recommended rifampicin dose (10 mg/kg) for treating tuberculosis is suboptimal. The PanACEA HIGHRIF1 trial evaluated the pharmacokinetics and early bactericidal activity of rifampicin doses of up to 40 mg/kg. Conventional statistical analyses revealed no significant exposure-response relationship. Our objectives were to explore the exposure-response relationship for high-dose rifampicin by using pharmacokinetic-pharmacodynamic modeling and to predict the early bactericidal activity of 50 mg/kg rifampicin. Methods Data included time to Mycobacterium tuberculosis positivity of liquid cultures of sputum specimens from 83 patients with tuberculosis who were treated with 10 mg/kg rifampicin (n = 8; reference arm) or 20, 25, 30, 35, or 40 mg/kg rifampicin (n = 15/arm) for 7 days. We used a semimechanistic time-to-event approach to model the time-to-positivity data. Rifampicin exposure and baseline time to culture positivity were explored as covariates. Results The baseline time to culture positivity was a significant covariate on the predicted initial bacterial load, and rifampicin exposure was a significant covariate on the bacterial kill rate in sputum resulting in increased early bactericidal activity. The 90% prediction interval for the predicted median day 7 increase in time to positivity for 50 mg/kg rifampicin was 7.25–10.3 days. Conclusions A significant exposure-response relationship was found between rifampicin exposure and early bactericidal activity. Clinical trial simulations showed greater early bactericidal activity for 50 mg/kg rifampicin.PostprintPeer reviewe
    corecore