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Abstract

A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that 

cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse 

plasma.

Introduction

The β-lactam antibiotics, such as the penicillins and cephalosporins, are among the most 

storied therapeutic agents in medicine. The most common mechanistic targets for these 

agents are the penicillin-binding proteins (PBPs), which are D,D-transpeptidases critical for 

cell-wall peptidoglycan synthesis in bacteria [1–3]. A typical cephalosporin, such as 

cefalexin, binds to and inhibits the action of PBPs because it resembles the structure of the 

terminal end of a crosslinking peptide chain, D-Ala-D-Ala (Fig. 1a). Accordingly, the 
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pharmacophore of β-lactam antibiotics is considered to comprise both the β-lactam ring 

(which is strained and therefore contains an electrophilic carbonyl for attack by the PBP) 

and the C-2 carboxylic acid, which mimics the C-terminal acid of the native peptide chain.

We recently reported two sets of cephalosporins that lack the C-2 carboxylic acid of the 

class but instead bear a neutral ester (1) or oxadiazole (2) group at this position (Fig. 1b) [4]. 

These compounds are active against Mycobacterium tuberculosis (Mtb) under non-

replicating conditions. This is significant because there are only a few reported cases of β-

lactams being active against tuberculosis [5–8]. In seeking to pursue advanced studies of 

compounds 1 and 2, we determined that the compounds were unstable in mouse plasma, 

thus prohibiting initial murine experimentation. In this paper, we report evidence that the 

locus of this instability is β-lactam hydrolysis correlated with the presence or absence of an 

acidic substituent at C-2 of compounds examined.

Materials and methods

Chemistry

Most new compounds in this study were prepared as previously reported for compound 1 
[4]. Thus, amide bond formation and esterification of the widely utilized starting 

cephalosporin core 7-aminodesacetoxycephalosporanic acid (7-ADCA) provided N-acylated 

cephalosporins whereas C-2 esters were prepared through subsequent esterification. The 

tetrazole-substituted cephalosporin 7 was prepared as described in the following section. See 

Supplementary Information for experimental details and characterization data.

Chemical stability

Compounds (5 μg/mL) were suspended in media (1:1 PBS/acetonitrile) at room temperature 

and pH = 5 and examined by HPLC/MS every 12 h for 6 days. Data are reported as 

percentage remaining in the supernatant as compared to time t0. Experiments were carried 

out in duplicate.

Plasma stability

The stability assays were carried out using plasma from female CD-1 mice 

(Bioreclamation). Stability samples consisted of 5 μL of stock compound solution in 100% 

DMSO and 95 μL of plasma to a final 10 μg/mL concentration. The samples were incubated 

at 37 °C with shaking; 10 μL were removed at each time point and combined with 100 μL of 

1:1 acetonitrile/methanol, 10 ng/mL of verapamil, and 10 μL of acetonitrile/water. Samples 

were analyzed by LC-MS/MS using the Q-Exactive high-resolution mass spectrometer 

(Thermo Fisher Scientific). Stability was calculated as the percent remaining of the parent 

compound compared to the initial concentration otherwise. Stability in marmoset plasma 

was similarly carried out.

Antimicrobial assays

Antimicrobial assays were carried out as reported [4].
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Results

As reported [4], compound 2 had good chemical stability in buffer pH of 7.4 but was rapidly 

degraded in mouse plasma, with <5% of the initial concentration of compound found 

remaining after 5 min incubation (Fig. 2). For comparison, cefalexin is relatively stable in 

mouse plasma over 1.5 h. MS analysis of the analyte showed that the metabolite added 18 

atomic mass units (amu) to the parent mass, suggesting β-lactam hydrolysis. This was 

confirmed by carrying out the incubation on “preparative” scale (ca. 2 mg) and obtaining an 

IR spectrum of the product, which clearly showed the disappearance of the distinctive β-

lactam νC=O stretch at 1779 cm−1 (Fig. 2b; this product was not obtained in sufficient 

quantities for full characterization, although the NMR was consistent with that of the ring-

opened analog of compound 2 (Supplementary Information, Figure S1A)).

Two lines of experimentation were pursued to test whether the observed β-lactam cleavage 

arose from simple chemical hydrolysis or might be attributed to an enzymatic factor present 

in mouse plasma (Fig. 2c). In the first, the stability of compound 2 was compared across 

three plasma samples. One such incubation was carried out at room temperature as 

previously described. In the other two, the plasma was pre-heated at 65 and 85 °C, 

respectively, to determine the effect of possible heat-caused denaturation on the hydrolytic 

capability of the plasma. The plasma was cooled to rt prior to incubation with the 

cephalosporin. Comparison of the three experiments clearly indicated that the compound 

was more stable when treated with heated plasma, to the degree that no decomposition at all 

was observed for the sample pre-heated at 85 °C. In addition, although these cephalosporins 

are chemically stable in solutions of moderate pH, they do decompose when heated under 

strongly acidic or basic conditions (pH 1 or 14, respectively). When so challenged, multiple 

products were obtained, presumably resulting from epimerization, double bond migration 

(known to occur in cephalosporins [9]), or other transformations. Comparison of the HPLC 

traces from a sample forcibly destroyed at high pH with those subjected to simple treatment 

with PBS/mouse plasma clearly indicates that the latter is a significantly cleaner reaction, 

also consistent with relatively mild conditions accompanying a possibly enzymatic β-lactam 

cleavage (Fig. 2d). We note that carrying out the incubations in the presence of the esterase 

inhibitor NaF did not affect the rapid degradation of these compounds.

The MS data from the incubation of C-2 n-propyl ester-containing 1 showed that the primary 

metabolite also had a mass of 18 amu higher than that of the starting cephalosporin, 

suggesting that β-lactam cleavage occurred in this case as well, rather than ester hydrolysis 

(which would result in a change of −60 + 18=−42 amu). In fact, the 1,2,4-oxadiazole—an 

established ester bioisostere [10, 11]—has been initially prepared on the assumption that 

ester hydrolysis would occur in vivo for compound 1, so the apparently preferential reaction 

of the lactam was surprising. To determine the effect of the nature of the ester on this 

feature, the stability in mouse plasma of a series of cephalosporins containing increasingly 

bulky esters (3a–c) was compared (Fig. 3). In each case, quick decomposition to afford the 

ring-opened amino acid was observed, with only modestly longer lifetimes noted for the 

diphenylmethyl ester.
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In our previous work, compound 2 was found to be considerably more stable in human than 

mouse plasma [4]. Thus, to determine the generality of the above observations and 

specifically interrogate the species dependence of the effect, three additional pairs of acid- 

and ester-containing cephalosporins 4–6 were prepared and examined for stability in both 

mouse and marmoset plasma, chosen because antitubercular drugs are commonly studied in 

marmosets [12, 13] (Fig. 4). As before, most of the compounds bearing a carboxylic acid at 

C-2 (series a) were stable during the entire time course of the experiments, regardless of 

whether they were performed in mouse or marmoset plasma (although 5b seems to be 

degraded to a larger extent under these conditions). In contrast, the corresponding esters 

(series b) were rapidly converted to the amino acids resulting from β-lactam cleavage. Most 

interestingly, all three esters were substantially more stable in marmoset plasma when 

compared to mouse plasma, with as much of 70% of the parent compound still being 

detectable for 6b after 3 h.

Finally, it was of interest to determine whether the apparent stabilizing power of the 

carboxylic acid at C-2 was specific to carboxylic acids per se or whether other acidic groups 

might behave similarly. Accordingly, we prepared the C-2 tetrazole-containing 

cephalosporin 7 as shown in Fig. 5a, driven in part by the hope that the tetrazole, beyond 

acting as a carboxylic acid isostere, would resemble the 1,2,4-oxadiazole moiety enough to 

confer anti-TB activity onto the compound. Compound 7 proved somewhat challenging to 

prepare, but was made following a procedure reported by Barth [14], first protecting the 

primary amine of 7-ADCA with a trichloroethoxycarbonyl (Troc). Using Ghosez’s reagent 

[15], we converted the C-2 carboxylic acid to the corresponding acid chloride, which was 

then converted to the p-methoxybenzyl (PMB) amide. In the key step, this amide was 

transformed to the PMB-protected tetrazole by converting the C-2 amido group to the 

corresponding iminyl chloride and subsequent cyclization using tetramethylguanidinyl azide 

[14]. Successive removal of the two protecting groups and amidation afforded 7 in low yield 

but in sufficient quantities for stability measurements and examination of its activity against 

Mtb. As is often the case, there was good news and bad news. The good news was that the 

tetrazole conferred consummate stability onto the cephalosporin; no degradation was 

observed during the entire time course of the experiment (Fig. 5b). Unfortunately, tetrazole 7 
was completely bereft of activity against Mtb under either replicating or non-replicating 

conditions (data not shown).

Discussion

The stability of cephalosporins and other classes of β-lactam antibiotics in biological media 

is necessary for the preclinical testing in relevant animal models. In particular, determination 

of protection against infection in mice is a very common early step in antibiotic 

development, including that of anti-TB agents [16]. Accordingly, the lack of stability of 

some cephalosporins lacking the usual C-2 carboxylic acid in mouse plasma presented us 

with an unexpected barrier to the development of compounds found active in cellular assays. 

Minimally, the results obtained in this study represent a caveat to those seeking to study non-

traditional cephalosporins as potential therapeutic agents.
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Most surprising was the specific nature of this instability. Early in our studies, we uncovered 

the n-propyl ester 1 as active against Mtb under nonreplicating conditions [4]. In 

contemplating further studies in this compound, we immediately focused on the possibility 

that the ester group would undergo hydrolysis in vivo, thus generating the parent acids 

known to be inactive against our target. This led us to undertake to the design and synthesis 

of the 1,2,4-oxadiazole 2 as a bioisosteric replacement specifically to avoid this problem. We 

were therefore surprised to see that both the oxadiazole and ester were unstable in mouse 

plasma, especially when the locus of instability in each set of compounds was determined to 

be the β-lactam and not the ester (Fig. 6).

Cephalosporin C-2 esters have regularly been reported in the literature as prodrugs, 

commonly as germinal carboxylates [11, 17–21]. For at least one C-2 methyl ester, β-lactam 

hydrolysis was reported under some conditions [22]. Clearly, the observation of biological 

activity in many of these cases shows that ester instability does not always precede β-lactam 

opening and drug inactivation. However, our results do suggest that care should be taken to 

test for β-lactam inactivation under some circumstances. Along these lines, we note that we 

have observed similar instability in many cephalosporins containing a neutral group at C-2 

beyond those reported here.

We do not currently know the causative agent for this β-lactam ring opening. However, 

several lines of circumstantial evidence lead us to speculate that some enzymatic factor in 

mouse plasma is responsible. These include the chemical stability of the cephalosporins 

under the conditions noted, different product profiles obtained from chemical vs. plasma-

mediated opening, increased stability when plasma is preheated, and differences obtained 

when incubating compounds in plasma derived from different species. The latter 

consideration is especially noteworthy, since it suggests that stability in mice, a very 

common model of antibiotic function, may not fully predict a compound’s behavior in the 

ultimately desired therapeutic setting.

The chemical cause of this instability is likewise unknown, but all of our evidence to date 

suggests that the presence of a charged moiety at C-2 serves a protective function against 

this observed instability. The most compelling example of this is the observation that the C-2 

tetrazole-containing 7 is stable under these circumstances. At this point, we hypothesize that 

whatever factor is responsible for the observed instability does not accommodate a charged 

group in its active site or that the charge per se stabilizes the β-lactam linkage by 

electrostatically disfavoring nucleophilic attack onto the lactam carbonyl group.

In summary, a systematic study of the stability of a set of cephalosporins in mouse plasma 

reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam 

cleavage in mouse plasma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structures of a cefalexin, a clinically used cephalosporin, and the generally accepted 

pharmacophore for cephalosporin antibiotics, and b two cephalosporins shown to be active 

in culture against Mtb [4]
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Fig. 2. 
Results obtained by treating cephalosporin 2 with mouse plasma. a Comparison of overall 

stability of cefalexin and 2 in mouse plasma. b Evidence that the β-lactam ring is cleaved by 

incubating a sample of 2 in mouse plasma. Top: IR spectrum obtained by incubating a small 

amount of 2 with mouse plasma and isolating a small amount of product. Bottom: IR 

spectrum of 2. c Effect of pre-heating plasma prior to incubation of compound 2. d Portion 

of HPLC traces obtained by chemically hydrolyzing compound 2 via heating at pH = 14 

(top) or by treatment in mouse plasma as in panel A. (Note: this figure has been edited for 

clarity and space; see Figure S1B in the Supplementary Information for the full HPLC 

traces)
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Fig. 3. 
Effect of ester structure on stability of C-2 cephalosporin esters 3a–c
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Fig. 4. 
Stability comparison of acid/ester pairs in mouse and marmoset plasma. a Chemical 

structures and stability of (b) 4a, b, (c) 5a, b, and (d) 6a, b
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Fig. 5. 
a Synthesis and b stability of tetrazole 7
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Fig. 6. 
Observed and expected products of decomposition of cephalosporin 1 in mouse plasma. All 

compounds drawn in neutral form
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