454 research outputs found

    Anisotropic magnetoresistance in nanocontacts

    Get PDF
    We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, like chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, like a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.Comment: 7 pages, 4 figures; revised for publication, new figures in greyscal

    Orbital contribution to the magnetic properties of iron as a function of dimensionality

    Get PDF
    The orbital contribution to the magnetic properties of Fe in systems of decreasing dimensionality (bulk, surfaces, wire and free clusters) is investigated using a tight-binding hamiltonian in an s,p,s, p, and dd atomic orbital basis set including spin-orbit coupling and intra-atomic electronic interactions in the full Hartree-Fock (HF) scheme, i.e., involving all the matrix elements of the Coulomb interaction with their exact orbital dependence. Spin and orbital magnetic moments and the magnetocrystalline anisotropy energy (MAE) are calculated for several orientations of the magnetization. The results are systematically compared with those of simplified hamiltonians which give results close to those obtained from the local spin density approximation. The full HF decoupling leads to much larger orbital moments and MAE which can reach values as large as 1μB\mu_B and several tens of meV, respectively, in the monatomic wire at the equilibrium distance. The reliability of the results obtained by adding the so-called Orbital Polarization Ansatz (OPA) to the simplified hamiltonians is also discussed. It is found that when the spin magnetization is saturated the OPA results for the orbital moment are in qualitative agreement with those of the full HF model. However there are large discrepancies for the MAE, especially in clusters. Thus the full HF scheme must be used to investigate the orbital magnetism and MAE of low dimensional systems

    Pointwise estimates for the Bergman kernel of the weighted Fock space

    Get PDF
    We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in L2(e2ϕ)L^2(e^{-2\phi}) where ϕ\phi is a subharmonic function with Δϕ\Delta \phi a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous Cauchy-Riemann equation and we characterize the compactness of this operator in terms of Δϕ\Delta \phi

    Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge

    Full text link
    With simple but exactly solvable model, we investigate the supercurrent transferring through the c-axis cuprate superconductor-normal metal-superconductor junctions with the clean normal metal much thicker than its coherence length. It is shown that the supercurrent as a function of thickness of the normal metal decreases much slower than the exponential decaying expected by the proximity effect. The present result may account for the giant proximity effect observed in the c-axis cuprate SNS junctions.Comment: 6 pages, 4 figure

    Layer-resolved magnetic exchange interactions of surfaces of late 3d elements: effects of electronic correlations

    Get PDF
    We present the results of an ab initio study of magnetic properties of Fe, Co and Ni surfaces. In particular, we discuss their electronic structure and magnetic exchange interactions (Jij), as obtained by means of a combination of density functional theory and dynamical mean-field theory. All studied systems have a pronounced tendency to ferromagnetism both for bulk and surface atoms. The presence of narrow-band surface states is shown to enhance the magnetic moment as well as the exchange couplings. The most interesting results were obtained for the Fe surface where the atoms have a tendency to couple antiferromagnetically with each other. This interaction is relatively small, when compared to interlayer ferromagnetic interaction, and strongly depends on the lattice parameter. Local correlation effects are shown to lead to strong changes of the overall shape of the spectral functions. However, they seem to not play a decisive role on the overall picture of the magnetic couplings studied here. We have also investigated the influence of correlations on the spin and orbital moments of the bulk-like and surface atoms. We found that dynamical correlations in general lead to enhanced values of the orbital moment.Comment: 13 pages, 12 figure

    Exploiting Self-Organization in Bioengineered Systems: A Computational Approach

    Get PDF
    The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates de novo vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate that at least an order of magnitude increase in production is possible, the system can be scaled up, and the self-organization of an efficient vascular network is robust. The work suggests that bioengineered multicellularity may offer efficiency improvements difficult to achieve with physical engineering approaches
    corecore