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The productivity of bioengineered cell factories is limited by inefficiencies in nutrient
delivery and waste and product removal. Current solution approaches explore changes
in the physical configurations of the bioreactors. This work investigates the possibilities of
exploiting self-organizing vascular networks to support producer cells within the factory.
A computational model simulates de novo vascular development of endothelial-like cells
and the resultant network functioning to deliver nutrients and extract product and waste
from the cell culture. Microbial factories with vascular networks are evaluated for their
scalability, robustness, and productivity compared to the cell factories without a vascular
network. Initial studies demonstrate that at least an order of magnitude increase in pro-
duction is possible, the system can be scaled up, and the self-organization of an efficient
vascular network is robust. The work suggests that bioengineered multicellularity may
offer efficiency improvements difficult to achieve with physical engineering approaches.

Keywords: agent-based modeling, multicellular modeling, self-organization, vasculogenesis, biomanufacturing

1. INTRODUCTION

Recent developments in genetics, bioengineering, synthetic biology, and nanotechnology have
enabled industrial scale biomanufacturing units for the production of many valuable products
(Sharma et al., 2001). Biopharmaceutical and recombinant enzyme proteins production is of primary
importance within this field (van Dijl and Hecker, 2013). Insulin (Walsh, 2005); vanillin (Hansen
et al., 2009; Brochado et al., 2010); antibodies such as penicillin (Kiel et al., 2005); and industrially
valuable enzymes such as lipase (Pandey et al., 1999), cellulase (Kuhad et al., 2011), and amylase
(Pandey et al., 2000) are already being produced in large scale with microbial factories. Apart
from enzyme production, microbes are also being engineered to produce industrially important
nanoparticles that are used in electronics and drug delivery (Dhanjal andCameotra, 2010;Villaverde,
2010), environmentally beneficial bioplastics (Höfer et al., 2011), insect silk (Scheibel, 2004), opiates
(Thodey et al., 2014), biofuels such as isobutanol (Desai et al., 2015), various chemicals (Vázquez
et al., 2010), and proteins (Ferrer-Miralles et al., 2009). These industrial bioreactors are relatively
inexpensive and efficient.

The quality and composition of the medium in which these cell factories are cultivated signifi-
cantly influences the productivity of the system (Hahn-Hägerdal et al., 2005). The optimal medium
composition varies between species and strains. For example, Escherichia coli is often cultured in
a fed-batch operation for recombinant protein production (Losen et al., 2004; Farrell et al., 2015;
Sohoni et al., 2015). As the producer cells grow, they not only create the product but also produce
waste. The accumulation of waste can have adverse effects on the culture, degrade product quality,
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and make it difficult to isolate the product (Hahn-Hägerdal et al.,
2005). For example, the acetate that inevitably forms during fer-
mentation of glucose by E. coli inhibits further glucose fermen-
tation. Overcoming the issue of waste accumulation even at low
nutrient concentrations is a significant concern for recombinant
protein production (Eiteman and Altman, 2006; Sanchez-Garcia
et al., 2016). Diffusion of nutrients and oxygen is rate limiting for
many aerobic fermentations (Sandén et al., 2003). Moreover, the
accumulation of the product can act in a negative feedback loop
and inhibit the production of further product (Aiba et al., 1968;
Levenspiel, 1980; Han and Levenspiel, 1988).

Frequent efforts to increase the stability and productivity of
cellular factory designs focus on controlling the cell culture during
production. The microenvironment of the factory cells must be
kept free of waste and product and continually replenished with
nutrients. Closed fed-batch systems achieve this by dispersing
the waste and product throughout the bioreactor by agitation,
while in chemostats, flow-through processes ensure that the cell
microenvironments are regularly replaced with new media. This
work explores a possible alternative solution to the problem of
controlling and optimizing the culture for product production.

Multicellular organisms depend on vascular systems for
nutrient delivery and waste removal (Monahan-Earley et al.,
2013). These vascular networks are formed either through vascu-
logenesis, a biological process in which scattered vessel precursor
cells self-organize to formnewnetworks, or through angiogenesis,
in which new vessels sprout from the existing vessels.

Both vasculogenesis and angiogenesis are driven primarily by
chemotaxis, a mechanism in which cells move in response to a
chemical gradient, along with cell–cell adhesion (Merks et al.,
2008). While many questions remain, progress in understanding
and exploiting both vasculogenesis and angiogenesis is being
made from a bioengineering perspective (Kaully et al., 2009;
Lovett et al., 2009). Takebe and colleagues (Takebe et al., 2014) suc-
cessfully implanted tissue-engineered vascular grafts in baboons
and dogs. Melero-Martin et al. (2008) showed that robust devel-
opment of functional vascular networks is possible in vivo. With
additional research in this area, bioengineered cells could be used
to form functional vascular networks to create a useful delivery
mechanism in cell factories. The producer cells bounded by the
vascular networkswould serve as biocatalysts, converting supplied
nutrients into a product, which is in turn transported by vascular
cells away from the producer cells. Previous efforts to grow cells
as biocatalysts have proved viable if cells are also encapsulated in a
carrier material that acts as a semipermeable membrane (Pscheidt
and Glieder, 2008; Hasunuma and Kondo, 2012).

This article presents a proof-of-concept cellular factory design
in which the producer cell cultivation environment is supported
by a self-organizing vascular network replicating the nutrient
delivery and waste removal process in multicellular organisms.
A simulation study evaluates the potential of the design for
enhanced production from stable cultures. In this design, the
vascular networks self-organize from randomly distributed bio-
engineered cells with properties similar to endothelial cells.
These newly formed vessels then support the product-producing
cells by delivering nutrients, extracting product, and removing
waste.

2. MULTICELLULAR EXPERIMENT
AND MODEL

An overview of the simulation process that builds and executes
the novel design for a microbial cell factory is given in Figure 1.
Here, a self-organizing vascular network is formed that provides
nutrient delivery and removal of product and waste from the
factory cells that produce the desired product. The cell factory is
created in three distinct phases: self-organization of the vascular
network, initiation of material flow through the vascular network,
and finally, the production of product and removal of waste in the
factory.

At this proof-of-concept stage, a two-dimensional model was
constructed and evaluated. Figure 1A illustrates the initial state
of the simulated factory. Vessel cells (blue) that simulate the
external circulatory system are arranged in two columns on both
sides of the production area. The left column represents the
source, and the right column represents the sink, in parallel to
the arterial–venous network architecture in vertebrates (Reiber
and McGaw, 2009). Circulatory cells are capable of secreting both
long-range and short-range chemoattractants to enable the self-
organized, newly formed vessels to connect in the circulatory
system. Inactive producer cells (yellow) are randomly distributed
across the area in between the two circulatory cell columns and
are mixed with bioengineered vascular cells (red), similar to the
endothelial cells in vertebrates (Merks et al., 2008).

In the first phase, the randomly distributed vascular cells self-
organize to form a vascular network that is connected to both
columns of circulatory cells. This process partitions the pro-
ducer cells into clusters contained within each network lacuna.
An example of a self-organized system at the end of Phase I is
illustrated in Figure 1B. In the second phase, flow through the
vascular system is estimated. Figure 1C shows the color-coded
magnitude of the calculated flow. Finally, the factory is executed.
Here, the functioning vascular network simulation is integrated
with producer cells that consume nutrients and secrete product to
simulate the steady-state operation of the cell factory. The running
factory is illustrated in Figure 1D. Note that in this case, the
network provides almost complete coverage of the producing area,
and all cells are active (green).

3. EVALUATION AND RESULTS

Thousands of simulationswere performed to gain insights into the
feasibility and potential benefits of this vascular factory design.
Three specific questions were addressed. First, how is the pro-
ductivity of the factory affected by the proportion of vascular
cells initially introduced into the factory? Second, how robust
is the self-organizing process? Robustness was investigated by
generating multiple vascular networks under different random
starting conditions. Finally, how do the physical dimensions of the
factory area influence productivity? Here, the influence of sepa-
rating the two circulatory columns over a range of distances was
explored.

Due to computational resources limitations, the size of the
factory is restricted to a fixed height of 516µm and widths
that varied from 516µm to 2.054mm. Each simulation has 780
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FIGURE 1 | Vascular factory: the three phases in modeling a vascular
factory design. Beginning with morphogenesis, where the vessel network
self-organizes, followed by network analysis where the flow through the
vessels is estimated, and then production, where the producer cells run and
the nutrient inflow and the product outflow are calculated. (A) Initial state:
random arrangement of vascular cells (red spheres) and inactive producer
cells (yellow spheres). The fixed circulatory cells are shown in blue on both
sides. (B) Phase I: self-organize the vessel network. Each vascular cell
secretes and responds to a chemoatractant. Strong mutual adhesion builds
vessels that connect into a near-regular network, partitioning the producer
cells in each lacunae. (C) Phase II: determine network flow. A network of
pipes is extracted and a pressure differential applied (source and sink).
Individual vessel flow is determined by applying Poiseuille’s Law (red is high,
black is low). (D) Phase III: run the factory. Nutrient flows into the network and
is dispersed, to activate the producer cells (green spheres). The network
removes the product, which flows to the sink.

circulatory cells arranged as two vessels (columns) on either side of
the grid to simulate the external delivery and extraction systems.
The total numbers of vascular and producer cells were set to
12,000, 24,000, or 48,000. At the beginning of each execution,
vascular and producer cells are randomly distributed in the area
between the circulatory cell columns (see Figure 1A). In Phase
III, the throughput of the system is calculated by summing the
total product removed by the vascular network over two simulated
hours once the factory has reached a steady state.

To address the first question, the ratio of vascular cells to
producer cells was varied between 0 and 75% while keeping
the total number of cells constant. The factory dimensions were
fixed at 516µm by 1.028mm. For each ratio, 10 simulations
were performed, and the average product throughput calculated.
In Figure 2A, the productivity is measured in micrograms of
product per hour that passed to the sink. Figure 2B shows product
throughput measured relative to the throughput when no vascu-
logenesis occurs. When the proportion of vascular cells is below
20%, the vascular network never completes a path between the two
circulatory columns, and no advantage in production is realized.
Between 20 and 25% vascular cells, the self-organized networks
are not robust: few of these connect between the source and sink
vessel elements, and most contain regions of disconnected vessels
that leave regions of producer cells without support. At 30%, the
vascular network demonstrates few defects, and vessels are well
distributed and cover the entire area of producer cells. Typical
examples of networks at different vessel/producer cell ratios are
illustrated in Figure 3.

Simulations with functional vascular networks produced a
15- to 40-fold increase in the product produced compared
to simulations run without vascular systems (see Figure 2B).
With functional vascular systems, relative productivity increases
and maximizes at 60% vascular-to-producer cell ratio and then
reduces as vascular density crowds out the producer cells. These
experiments show that vascular networks increase individual cell
productivity and thereby the overall efficiency of the factory.

For this approach to be viable, the self-organizing step that
builds the vascular system must be insensitive to the initial ran-
dom arrangement of cells and the stochasticity of cell movement.
In each vascular factory, an effective network that can deliver
nutrients and collect product must be constructed autonomously.
In the second set of experiments, the ratio of vascular and
producer cells is fixed at 30%, and multiple simulations were
performed, each with a unique random seed. As shown in
Figure 2C, although the vascular networks formed in each case
were distinct, all functioned similarly and produced little variabil-
ity in overall production. Hence, the self-organization process is
robust.

Finally, the separation distance of circulatory columns was
explored. Ideally, circulatory columns would be widely spaced,
with the self-organized network supporting the bulk of the pro-
ducer cells needs. In this study, the height was maintained at
516µm, and the width varied between 516µm and 2.054mm
with widths changed by powers of two. Figure 2D illustrates the
productivity estimates for three different widths. These results
show that the productivity per unit area varied little with changes
in width. Therefore, productivity improves linearly with separa-
tion distance, suggesting that a design with a small number of
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FIGURE 2 | Evaluation: (A) the effect of varying the percentage of vascular cells in the initial random configuration on the total product throughput per
hour; (B) the effect of varying the percentage of vessel cells in the initial random configuration on relative productivity. Productivity is measured by
dividing throughput of the specific experiment with the throughput of the factory with no vascular system; (C) illustration of the robustness of the self-organizing
process as a histogram of product throughput from networks generated with different random seeds; (D) the effect of increasing the width of the culture. Here, the
actual productivity is given in micrograms per hour per cubic micrometer of culture.

FIGURE 3 | Proportion of vascular cells: example of self-organized networks from different proportions of vessel and producer cells. (A) At 15%, only
isolated and dysfunctional vessels are formed. (B) At 25%, regions with disconnected vessels become common, leading to areas of inactive producer cells (yellow).
In this case, darker vascular cells signify very low or no nutrient flow. (C) At higher densities such as 45%, many small lacunae are formed and all producer cells are
active.

widely separated pipes (vessels) will provide maximal product
production. Examples of a vascular network for the 516µm
and 2.054mm widths are given in Figure 4A and Figure 4B,
respectively.

4. MATERIALS AND METHODS

An agent-based simulator framework, cDynoMiCs (Baker et al.,
2015) was used in this study. cDynoMiCs is an extension of
iDynoMiCs framework developed by the Kreft group at University
of Birmingham (Lardon et al., 2011) for investigations of biofilms.
cDynoMiCs facilitates modeling eukaryotic cells with the addition
of extracellular matrix, tight junctions, and chemotaxis. Each
cell is represented as a spherical particle, which has a particular
biomass with cell type-specific properties. Particles can secrete or
take up chemicals that diffuse through the domain. Particles also

exhibit homogeneous and heterogenous adhesion, chemotaxis,
and the formation of tight junctions. The simulation process
interleaves biomechanical stress relaxation where the particles are
moved in response to individual forces and biochemical processes
such as secretion, uptake, and diffusion of molecules through a
differential equation solver.

4.1. Phase I: Self-organize the Vascular
Network
Beginning in the randomly seeded state such as that illustrated
in Figure 1A, the vessel and circulatory cells become active and
start to secrete chemoattractants, described by the Monod-kinetic
reaction in equation (1). Nc is the concentration of the nutrient
initially supplied for chemoattractant (C) secretion,M is the mass
of the vascular or circulatory cell, and the diffusion coefficient,
Dc , of both chemoattractants are set to 1× 10−13 m2 s−1 as given
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FIGURE 4 | Simulation examples with different grid widths: (A) an example of a vascular network with grid size 516µm× 516µm; (B) an example of a
vascular network with grid size 516µm× 2.052mm.

FIGURE 5 | Phase I: self-organizing the network: the distribution of chemoattractant during vessel formation and at a steady state, along with the
final vessel network formed. In all images of biochemical distribution, blue signifies a low concentration, while red signifies a high concentration (A–C).

in the in vitro angiogenesis study of Merks et al. (2008). The
chemoattractant secreted by the vascular cells has a fast rate of
decay, βv, which creates a steep local gradient surrounding each
cell. The chemoattractant secreted by the circulatory cells βc has
a slower rate of decay creating a longer range gradient.

∂C
∂t = Dc▽2C + µc

k
(Nc + k)Mv − βC. (1)

The vascular cells respond to the gradient of the chemoattrac-
tants by tending to move “uphill,” a process described in equation
(2) and by Adler (1965). Let p be a particle that responds to
chemoattractant C. A random unit vector c⃗ is generated and con-
sidered as a potential chemotactic force on p. The local gradient of
chemoattractant across p in direction c⃗ is determined by sampling
C ahead of p, referred to as C+, and behind p, referred to as C−.
The magnitude of force ∆F in direction c⃗ is given by equation (2)
(Merks et al., 2008), where λ is the parameter that controls the
magnitude of the response to the gradient.

F = λ

(
C+

1 + βC+ − C−

1 + βC−

)
. (2)

The force F · c⃗ is only applied to the particle if F> 0. Once
all particles have been assigned forces, the system is relaxed by
a shoving algorithm that moves the particles to avoid overlap-
ping. In this way, the vessel particles push through the produc-
tion particles, form clumps due to attractive adhesive forces and
then buckle and extend immature vessels. The system eventually
reaches the morphology illustrated in Figure 5C, in which all
biomechanical forces are relaxed and concentrations of molecules
are stable. Figure 5 shows the chemoattractant distribution during
formation and at the stable state, along with the corresponding
final cellular morphology.

4.2. Phase II: Determine Network Flow
The process to determine material flow through the network is
illustrated inFigure 6 and consists of first extracting a network-of-
pipes representation of the cellular morphology, then simulating
its execution. To identify the pipes and their connectivity, the
output file produced by the simulation is visualized as an image
using POV-Ray software (Persistence of Vision Pty. Ltd, 2004).
Particles are rendered as illuminated spheres of differing colors
that signify their type as illustrated in Figure 6A. This image
is then converted to a binary image shown in Figure 6B, and
the local width of each vessel is extracted using Fiji software
(Schindelin et al., 2012), an extension of ImageJ (Schneider et al.,
2012; Schindelin et al., 2015). The local width measure is needed
during the last step of the process. The binary image is skele-
tonized using the algorithm of Lee et al. (1994) (illustrated in
Figure 6C) and implemented by the Ignacio Arganda-Carreras
software (Arganda-Carreras et al., 2010). The skeletonized image
is transformed to a skeletonized graph (see Figure 6D) using the
AnalyzeSkeleton algorithm (Arganda-Carreras et al., 2010). This
skeletonized graph is planar with each edge representing a unique
vessel in the network. Each edge is assigned a radius (half the
average local width) and a length. The network is now represented
as a graph of pipes with n nodes andm vessels and is ready for the
final step.

First, a graph traversal is performed to determine if a path
exists through the network connecting the source (the upper left)
and sink (lower right) in Figure 1B. Each node i in the graph
is assigned an unknown variable Pi representing the pressure at
node i. Each edge (i, j) in the graph is assigned an unknown
variable Q(i,j) representing the flow through i, j, and an unknown
variable ∆P(i,j), representing the pressure drop Pi − Pj. Next a
series of equations of the graph are generated using Poiseuille’s
Law (Sutera and Skalak, 1993) as given in equations (3)–(5), relat-
ing Q(i,j), ∆P(i,j), and Pi to characteristics of the network (r and l
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FIGURE 6 | Phase II: initially, a network of pipes is extracted from the vessel morphology in steps (A–D). Then, the flow rate of material through each vessel
is determined and illustrated (E) using a color map to signify flow rate magnitude. Red is highest flow rate and black is the lowest.

the radius and length of each vessel) and operating conditions
(P1 and Pn, the source and sink pressure, respectively). For this
simulation, ∆P(1 ,n) was set at 1 KPa (Wilking et al., 2013). The
viscosity of the fluid η is set to that of water at 25°C. The following
linear equations are generated:

For each edge i, j,

Q(i,j) =
πr4∆P(i,j)

8ηl . (3)

For each node, i with σ(i) neighbors,∑
k∈σ(i)

Q(i,k) = 0. (4)

For each lacunae cycle ϕ(k),∑
(i,j)∈ϕ(k)

∆P(i,j) = 0. (5)

Finally, these equations are solved using a linear equation solver
to calculate the flow rateQ(i ,j) through all the vessels and the pres-
sure drop ∆P(i ,j) over each vessel. The final solution is illustrated
in Figure 6E with a color map signifying the magnitude of the
flow. Note that the vessels in the horizontal direction tend to have
high flow, while the vessels in the vertical direction tend to have
low flow.

4.3. Phase III: Run the Factory
To execute the factory, each vessel provides nutrient N and
removes product X along the vessel length. The rate of N and X
through a vessel increases with flow rate and radius but is limited
by transfer rates through the vessel walls (Chrispeels et al., 1999).

Models have been developed for engineered vascular networks in
the study by Morin et al. (2015) and in vitro networks in the study
by O’Dea et al. (2015). This work employs a simplified model
described below.

The rate of nutrient supply along the vessel (i, j) is defined as:

∂N(i,j)

∂t = ρn2πr
Q(i,j)

(kout + Q(i,j))
kl

(kl + N)
, (6)

where Q(i ,j) is the flow rate determined from Phase II, ρn is a
transfer constant, and r is the radius of the vessel. The rate of
nutrient delivery is controlled by the flow in the vessel, represented
as a Hill function of Q(i ,j), and the amount of N in the microenvi-
ronment. As the nutrient in microenvironment decreases, the rate
of nutrient delivery increases, defined in the function above.

The availability of nutrient will activate the producer cells that
will begin to consumeN and produce X. The controlling equation
is given as

∂X
∂t = µp

N
(N + kp)

ki
(X + ki)

Mp + Dp▽2X, (7)

whereMp is producer cell biomass. To produce a realistic model of
production, the parameter values of the producer cells is replicated
from the study by Bernard et al. (1999) and is based on vanillin
production of Pycnoporus cinnabarinus. The vascular cell factory
approach is not specific to this cell type andproduct.Othermodels
of producer cells may be substituted. The product X is secreted by
producer cells consumingN followingMichaelis–Menten kinetics
with a reaction rate of µp, where the saturation of enzymes
involved in the X production is considered kp. The negative feed-
back due to product inhibition is also taken into account, with a
correspondent inhibitor constant ki (Aiba et al., 1968; Levenspiel,
1980; Han and Levenspiel, 1988).
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FIGURE 7 | Phase III: running the factory: the distribution of nutrient (A) when the vessel flow begins, but the producer cells are not yet active and
(B) at steady-state nutrient distribution when the factory is running; note that all extravessel nutrient is consumed. (C) The product distribution when the
factory is running.

The rate of product uptake along the vessel (i, j) is defined as:

∂X(i,j)

∂t = −ρp2πr
Q(i,j)

(kin + Q(i,j))
X

(kp + X)
(8)

where Q(i ,j) is the flow rate determined from Phase II, ρp is a
transfer constant, and r is the vessel radius. The rate is controlled
by the flow similarly to N, but in this case, the effect of X in the
microenvironment is different. Here, as the amount ofX increases,
the rate of removal increases.

Nutrient will be consumed by the producer cells in direct
correspondence to the production of X, but at a different reaction
rate µn:

∂N
∂t = −µn

N
(N + kp)

ki
(ki + X)

Mp + Dp▽2N. (9)

Figure 7 illustrates the cellular factory producing product from
nutrient flow for the network illustrated in Figure 5C. Figure 7A
illustrates a solution to equations (6) and (9) before producer cells
are active. Figure 7B illustrates the nutrient distribution following
producer cell activation. In Figure 7C, the distribution of product
is illustrated. Note the regions of low product (the blue areas)
where vascular flow is limited.

The final step is to extract the product from the fluid flowing
out of the factory. This fluidwill contain product, unused nutrient,
and waste. The method utilized for separation is product depen-
dent, but methods developed for conventional bioreactors will be
equally applicable to vascular factories.

5. DISCUSSION AND CONCLUSION

This work presents a computational demonstration of a pos-
sible vascular factory design. The potential increases in cell
factory productivity by a self-organizing vascular system were
assessed through an integrated model of vessel morphogene-
sis and dynamic vascular system functioning. The robustness
of vessel self-organization was evaluated by a stochastic model
over a population of random initial states, and scalability was
assessed by varying the separation distance between circulatory
vessels.

Bioreactor design has remained stagnant for the past decade.
The greatest improvement has come from the introduction of
single-use bioreactors, which feature disposable large bags con-
taining presterilized and mixed media that are agitated (Shukla

and Gottschalk, 2013). However, the general bioreactor design
remains the same. In the investigations described here, the use
of simulated vascular factories fundamentally shifts how biore-
actors can be used to grow healthy cells and generate valuable
products. Vascularized factories do not rely on stirring or shaking.
Instead, the formation of well-defined vascular networks feeds
the cells, eliminates waste, and protects the products. Further-
more, there is no explicit engineering design needed to construct
the vascular network because it is formed by self-organizing
endothelial-like cells.

To move these cellular factories from a computational model
to a real-world tool, specific cell types must be engineered that
exhibit the requisite properties, such as chemotaxis, and be able
to function together to create a stable tissue. Recent work in
engineering-induced pluripotent stem cells may hold the key to
advances in this area (Warren et al., 2010; Robinton and Daley,
2012), particularly for vascular systems (Leeper et al., 2010). In
addition, a means must be devised for linking the nascent ves-
sels with the preexisting circulatory system. Here, advances in
microfabrication may be relevant (Borenstein et al., 2002).

For insights provided by simulations to be useful, simulated
cells must accurately reflect cell physiology and the underlying
biomechanical and biochemical physiological processes. Recent
multiscale models have advanced tissue modeling and cell model
validation techniques in cancer and (Macklin et al., 2012) age-
related macular degeneration (Baker et al., 2015). Such tech-
niques can be applied to improve the fidelity of vascular factory
models.

Optimization of vascular bioreactors will require millions of
simulations and necessitate a significant speedup of simulator
execution time. In addition to rapid execution, the scale of the
simulations needs to be expanded to billions of cells to consider
cell factories in three dimensions. Such 3D designs hold promise
for significant improvements because the vessels could support
far more producer cells. Recently, two fast large-scale simulation
systems have been developed by Ghaffarizadeh et al. (2015) and
Biocellion (Kang et al., 2014). Both these systems implement an
individual-based approach similar to cDynoMiCs employed here.
Biocellion is implemented as a distributed architecture executable
on the Cloud (Ibrahim et al., 2015) and is capable of simulating
complex 3D models of billions of cells in a matter of a few hours.
Biocellion has the potential to simulate an industrial-scale vascular
microbial cell factory consisting of trillions of cells.

In summary, this simulation study has demonstrated that vas-
cular cell factories have the potential to be robust and scalable,
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leading to significant increases in productivity and changes to
bioreactor designs. Advances in cellular and tissue engineering
will be needed to implement such a design, and major progress
is constantly occurring. Implementation of this type of cell fac-
tories may fundamentally change the way pharmaceutical and
high-value biological items are produced.
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