226 research outputs found

    Utilization of Information Sources by the Biologists in Madurai Kamaraj University, Madurai: An Analytical Study

    Get PDF
    This study revealed importance of information sources among the biological faculty members and research scholars of Madurai Kamaraj University. In this studies the relative importance of information sources among the biologist on the basis of statistical tests concludes that the personal attributes of biologists such as designation, gender, age, qualification, subject, experience, nature of work and nature of research in a university level have bearing on the use of information resources. The results show that position and education are good predictors of information use while professional experience has little power in explaining variations in information source use. The findings of the study support the notion that information source use is a result of complex set of interactions among variables. The examination of the interaction of some of the variables such as education, position, and experience provides insight in understanding the factors that influence the use of information sources. The study reveals that the Reprints/Prints, Abstracting and Indexing Journal, primary periodicals, Newspaper, Dictionaries, Subject Bibliographies and Monographs / Text books were the sources of information which were most frequently used by the largest majority of the biologists

    Sapphire: A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols (Extended Version)

    Get PDF
    Public key cryptography protocols, such as RSA and elliptic curve cryptography, will be rendered insecure by Shor’s algorithm when large-scale quantum computers are built. Cryptographers are working on quantum-resistant algorithms, and lattice-based cryptography has emerged as a prime candidate. However, high computational complexity of these algorithms makes it challenging to implement lattice-based protocols on low-power embedded devices. To address this challenge, we present Sapphire – a lattice cryptography processor with configurable parameters. Efficient sampling, with a SHA-3-based PRNG, provides two orders of magnitude energy savings; a single-port RAM-based number theoretic transform memory architecture is proposed, which provides 124k-gate area savings; while a low-power modular arithmetic unit accelerates polynomial computations. Our test chip was fabricated in TSMC 40nm low-power CMOS process, with the Sapphire cryptographic core occupying 0.28 mm2 area consisting of 106k logic gates and 40.25 KB SRAM. Sapphire can be programmed with custom instructions for polynomial arithmetic and sampling, and it is coupled with a low-power RISC-V micro-processor to demonstrate NIST Round 2 lattice-based CCA-secure key encapsulation and signature protocols Frodo, NewHope, qTESLA, CRYSTALS-Kyber and CRYSTALS-Dilithium, achieving up to an order of magnitude improvement in performance and energy-efficiency compared to state-of-the-art hardware implementations. All key building blocks of Sapphire are constant-time and secure against timing and simple power analysis side-channel attacks. We also discuss how masking-based DPA countermeasures can be implemented on the Sapphire core without any changes to the hardware

    Robust SAT-Based Search Algorithm for Leakage Power Reduction

    Full text link

    Prolonged energy harvesting for ingestible devices

    Get PDF
    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged-monitoring systems for patients. Although previous biocompatible power-harvesting systems for in vivo use have demonstrated short (minute-long) bursts of power from the stomach, little is known about the potential for powering electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW mm⁻² of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell could provide power to the next generation of ingestible electronic devices for prolonged periods of time inside the gastrointestinal tract.National Institutes of Health (U.S.) (Grant EB-000244

    A review on hierarchical routing protocols for wireless sensor networks

    Get PDF
    The routing protocol for Wireless Sensor Networks (WSNs) is defined as the manner of data dissemination from the network field (source) to the base station (destination). Based on the network topology, there are two types of routing protocols in WSNs, they are namely flat routing protocols and hierarchical routing protocols. Hierarchical routing protocols (HRPs) are more energy efficient and scalable compared to flat routing protocols. This paper discusses how topology management and network application influence the performance of cluster-based and chain-based hierarchical networks. It reviews the basic features of sensor connectivity issues such as power control in topology set-up, sleep/idle pairing and data transmission control that are used in five common HRPs, and it also examines their impact on the protocol performance. A good picture of their respective performances give an indication how network applications, i.e whether reactive or proactive, and topology management i.e. whether centralized or distributed would determine the network performance. Finally, from the ensuring discussion, it is shown that the chain-based HRPs guarantee a longer network lifetime compared to cluster-based HRPs by three to five times

    Energy balance between voltage-frequency scaling and resilience for linear algebra routines on low-power multicore architectures

    Get PDF
    [EN] Near Threshold Voltage (NTV) computing has been recently proposed as a technique to save energy, at the cost of incurring higher error rates including, among others, Silent Data Corruption (SDC). In this paper, we evaluate the energy efficiency of dense linear algebra routines using several low-power multicore processors and we analyze whether the potential energy reduction achieved when scaling the processor to operate at a low voltage compensates the cost of integrating a fault tolerance mechanism that tackles SDC. Our study targets algorithmic-based fault-tolerant versions of the dense matrix-vector and matrix(matrix) multiplication kernels (GEMV and GEMM, respectively), using the BLIS framework, as well as an implementation of the LU factorization with partial pivoting built on top of GEMM, Furthermore, we tailor the study for a number of representative 32-bit and 64-bit multicore processors from ARM that were specifically designed for energy efficiency. (C) 2017 Elsevier B.V. All rights reserved.The researchers from Universidad Jaume I were supported by project CICYT TIN2014-53495-R of MINECO and FEDER, and the FPU program of MECD. The researcher from Universitat Politecnica de Catalunya was supported by projects TIN2015-65316-P from the Spanish Ministry of Education and 2014 SGR 1051 from the Generalitat de Catalunya, Dep. d'Innovacio, Universitats i Empresa.Catalán, S.; Herrero, JR.; Quintana Ortí, ES.; Rodríguez-Sánchez, R. (2018). Energy balance between voltage-frequency scaling and resilience for linear algebra routines on low-power multicore architectures. Parallel Computing. 73:28-39. https://doi.org/10.1016/j.parco.2017.05.004S28397

    Computer-Assisted Prototyping of Advanced Microsystems

    Get PDF
    Contains reports on five research projects.Defense Advanced Research Projects Agency Contract DABT 63-95-C-0088Stanford Universit

    Energy extraction from the biologic battery in the inner ear

    Get PDF
    Endocochlear potential (EP) is a battery-like electrochemical gradient found in and actively maintained by the inner ear [superscript 1, 2]. Here we demonstrate that the mammalian EP can be used as a power source for electronic devices. We achieved this by designing an anatomically sized, ultra-low quiescent-power energy harvester chip integrated with a wireless sensor capable of monitoring the EP itself. Although other forms of in vivo energy harvesting have been described in lower organisms [superscript 3, 4, 5], and thermoelectric [superscript 6], piezoelectric [superscript 7] and biofuel [superscript 8, 9] devices are promising for mammalian applications, there have been few, if any, in vivo demonstrations in the vicinity of the ear, eye and brain. In this work, the chip extracted a minimum of 1.12 nW from the EP of a guinea pig for up to 5 h, enabling a 2.4 GHz radio to transmit measurement of the EP every 40–360 s. With future optimization of electrode design, we envision using the biologic battery in the inner ear to power chemical and molecular sensors, or drug-delivery actuators for diagnosis and therapy of hearing loss and other disorders.Focus Center Research Program. Focus Center for Circuit & System Solutions. Semiconductor Research Corporation. Interconnect Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty research projects and a list of publications.Lockheed Sanders, Inc. Contract BZ4962U.S. Army Research Laboratory Grant QK-8819U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-95-1-0834U.S. Navy - Office of Naval Research Grant N00014-96-1-0930U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072National Science Foundation Graduate Research Fellowship Grant MIP 95-02885Lockheed Sanders, Inc. Grant N00014-93-1-0686National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/ARL Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000
    corecore