19 research outputs found

    Plexin-B2 Negatively Regulates Macrophage Motility, Rac, and Cdc42 Activation

    Get PDF
    Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2−/− macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2−/− macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing

    An alternative spin-state-selective pulse sequence element

    No full text
    International audienc

    Functionalization of pectin with laccase-mediated oxidation products of ferulic acid

    No full text
    International audiencePectin is a natural biopolymer extracted mostly from citrus peel, sugar beet and apple pomace. In order to improve its functional properties and then to enlarge the field of its potential applications, functionalization reaction of citrus pectin with ferulic acid (FA)-oxidation products was performed in aqueous medium, at 30 °C and pH 7.5, in the presence of Myceliophthora thermophila laccase as biocatalyst. The conjugation between FA-oxidation products and pectin was confirmed using FTIR, UV–Vis and LC–MS analyses. The obtained results suggested that covalent bonds were between the pectin carboxyl groups and FA-oxidation products between the pectin carboxyl groups and FA-oxidation products. The determination of the total phenolic content showed that the modified pectin contained 5 times more phenols than the native pectin. In view of these results, this enzymatic procedure appears as a promising way to provide new pectin-based polymers that are expected to present new properties of interest
    corecore