782 research outputs found

    Signatures of Dark Matter Scattering Inelastically Off Nuclei

    Full text link
    Direct dark matter detection focuses on elastic scattering of dark matter particles off nuclei. In this study, we explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt de-excitation. We calculate the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents. For these cases, we find that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 MeV. We calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow to determine the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One figure added; supplemental material (fits to the structure functions) added as an Appendi

    arrayMap 2014: an updated cancer genome resource.

    Get PDF
    Somatic copy number aberrations (CNA) represent a mutation type encountered in the majority of cancer genomes. Here, we present the 2014 edition of arrayMap (http://www.arraymap.org), a publicly accessible collection of pre-processed oncogenomic array data sets and CNA profiles, representing a vast range of human malignancies. Since the initial release, we have enhanced this resource both in content and especially with regard to data mining support. The 2014 release of arrayMap contains more than 64,000 genomic array data sets, representing about 250 tumor diagnoses. Data sets included in arrayMap have been assembled from public repositories as well as additional resources, and integrated by applying custom processing pipelines. Online tools have been upgraded for a more flexible array data visualization, including options for processing user provided, non-public data sets. Data integration has been improved by mapping to multiple editions of the human reference genome, with the majority of the data now being available for the UCSC hg18 as well as GRCh37 versions. The large amount of tumor CNA data in arrayMap can be freely downloaded by users to promote data mining projects, and to explore special events such as chromothripsis-like genome patterns

    New model for the neutrino mass matrix

    Get PDF
    I suggest a model based on a softly broken symmetry L_e - L_mu - L_tau and on Babu's mechanism for two-loops radiative generation of the neutrino masses. The model predicts that one of the physical neutrinos (nu_3) is massless and that its component along the nu_e direction (U_e3) is zero. Moreover, if the soft-breaking term is assumed to be very small, then the vacuum oscillations of nu_e have almost maximal amplitude and solve the solar-neutrino problem. New scalars are predicted in the 10 TeV energy range, and a breakdown of e-mu-tau universality should not be far from existing experimental bounds.Comment: 7 pages including 3 figure

    Measuring a Light Neutralino Mass at the ILC: Testing the MSSM Neutralino Cold Dark Matter Model

    Full text link
    The LEP experiments give a lower bound on the neutralino mass of about 46 GeV which, however, relies on a supersymmetric grand unification relation. Dropping this assumption, the experimental lower bound on the neutralino mass vanishes completely. Recent analyses suggest, however, that in the minimal supersymmetric standard model (MSSM), a light neutralino dark matter candidate has a lower bound on its mass of about 7 GeV. In light of this, we investigate the mass sensitivity at the ILC for very light neutralinos. We study slepton pair production, followed by the decay of the sleptons to a lepton and the lightest neutralino. We find that the mass measurement accuracy for a few-GeV neutralino is around 2 GeV, or even less if the relevant slepton is sufficiently light. We thus conclude that the ILC can help verify or falsify the MSSM neutralino cold dark matter model even for very light neutralinos.Comment: 7 pages, 1 figure; references adde

    Background reduction and sensitivity for germanium double beta decay experiments

    Full text link
    Germanium detectors have very good capabilities for the investigation of rare phenomena like the neutrinoless double beta decay. Rejection of the background entangling the expected signal is one primary goal in this kind of experiments. Here, the attainable background reduction in the energy region where the neutrinoless double beta decay signal of 76Ge is expected to appear has been evaluated for experiments using germanium detectors, taking into consideration different strategies like the granularity of the detector system, the segmentation of each individual germanium detector and the application of Pulse Shape Analysis techniques to discriminate signal from background events. Detection efficiency to the signal is affected by background rejection techniques, and therefore it has been estimated for each of the background rejection scenarios considered. Finally, conditions regarding crystal mass, radiopurity, exposure to cosmic rays, shielding and rejection capabilities are discussed with the aim to achieve a background level of 10-3 c keV-1 kg-1 y-1 in the region of interest, which would allow to explore neutrino effective masses around 40 meV.Comment: 13 pages, 19 figures. Accepted by Astroparticle Physic

    Neutrino Oscillations and R-parity Violating Supersymmetry

    Full text link
    Using the neutrino oscillations and neutrinoless double beta decay experimental data we reconstructed an upper limit for the three generation neutrino mass matrix. We compared this matrix with the predictions of the minimal supersymmetric(SUSY) model with R-parity violation(\rp) and extracted stringent limits on trilinear \rp coupling constants λi33,λi33\lambda_{i33}, \lambda'_{i33}. Introducing an additional U(1)XU(1)_X flavor symmetry which had been successful in explaining to relate various \rp parameters. In this model we found a unique scenario for the neutrino masses and the \rp couplings compatible with the neutrino oscillation data. Then we derived predictions for certain experimentally interesting observables.Comment: 19 pages, 1 figure; additional references included, minor corrections and typos fixed. Version to appear in Nucl.Phys.

    A potential test of the CP properties and Majorana nature of neutrinos

    Get PDF
    The scattering of solar neutrinos on electrons may reveal their CP properties, which are particularly sensitive to their Majorana nature. The cross section is sensitive to the neutrino dipole moments through an interference of electro-magnetic and weak amplitudes. We show how future solar neutrino experiments with good angular resolution and low energy threshold, such as Hellaz, can be sensitive to the resulting azimuthal asymmetries in event number, and could therefore provide valuable information on the CP properties and the nature of the neutrinos, provided the solar magnetic field direction is fixed.Comment: 14 pages, 1 figure, eq. (19) corrected. Version to be publishe

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio

    First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector

    Full text link
    The EDELWEISS collaboration has performed a direct search for WIMP dark matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane. No nuclear recoils are observed in the fiducial volume in the 30-200 keV energy range during an effective exposure of 4.53 kg.days. Limits for the cross-section for the spin-independent interaction of WIMPs and nucleons are set in the framework of the Minimal Supersymmetric Standard Model (MSSM). The central value of the signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.
    corecore