521 research outputs found
Electronic structures of free-standing nanowires made from indirect bandgap semiconductor gallium phosphide
We present a theoretical study of the electronic structures of freestanding
nanowires made from gallium phosphide (GaP)--a III-V semiconductor with an
indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and
rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal
cross sections. Based on tight binding models, both the band structures and
wave functions of the nanowires are calculated. For the [001]-oriented GaP
nanowires, the bands show anti-crossing structures, while the bands of the
[111]-oriented nanowires display crossing structures. Two minima are observed
in the conduction bands, while the maximum of the valence bands is always at
the -point. Using double group theory, we analyze the symmetry
properties of the lowest conduction band states and highest valence band states
of GaP nanowires with different sizes and directions. The band state wave
functions of the lowest conduction bands and the highest valence bands of the
nanowires are evaluated by spatial probability distributions. For practical
use, we fit the confinement energies of the electrons and holes in the
nanowires to obtain an empirical formula.Comment: 19 pages, 10 figure
Vacancy complexes in nonequilibrium germanium-tin semiconductors
Understanding the nature and behavior of vacancy-like defects in epitaxial
GeSn metastable alloys is crucial to elucidate the structural and
optoelectronic properties of these emerging semiconductors. The formation of
vacancies and their complexes is expected to be promoted by the relatively low
substrate temperature required for the epitaxial growth of GeSn layers with Sn
contents significantly above the equilibrium solubility of 1 at.%. These
defects can impact both the microstructure and charge carrier lifetime. Herein,
to identify the vacancy-related complexes and probe their evolution as a
function of Sn content, depth-profiled pulsed low-energy positron annihilation
lifetime spectroscopy and Doppler broadening spectroscopy were combined to
investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range.
The samples were grown by chemical vapor deposition method at temperatures
between 300 and 330 {\deg}C. Regardless of the Sn content, all GeSn samples
showed the same depth-dependent increase in the positron annihilation line
broadening parameters, which confirmed the presence of open volume defects. The
measured average positron lifetimes were the highest (380-395 ps) in the region
near the surface and monotonically decrease across the analyzed thickness, but
remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps
higher than the Ge reference layers. Surprisingly, these lifetimes were found
to decrease as Sn content increases in GeSn layers. These measurements indicate
that divacancies are the dominant defect in the as-grown GeSn layers. However,
their corresponding lifetime was found to be shorter than in epitaxial Ge thus
suggesting that the presence of Sn may alter the structure of divacancies.
Additionally, GeSn layers were found to also contain a small fraction of
vacancy clusters, which become less important as Sn content increases
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Soon after the first measurements of nuclear magnetic resonance (NMR) in a
condensed matter system, Bloch predicted the presence of statistical
fluctuations proportional to in the polarization of an ensemble of
spins. First observed by Sleator et al., so-called "spin noise" has
recently emerged as a critical ingredient in nanometer-scale magnetic resonance
imaging (nanoMRI). This prominence is a direct result of MRI resolution
improving to better than 100 nm^3, a size-scale in which statistical spin
fluctuations begin to dominate the polarization dynamics. We demonstrate a
technique that creates spin order in nanometer-scale ensembles of nuclear spins
by harnessing these fluctuations to produce polarizations both larger and
narrower than the natural thermal distribution. We focus on ensembles
containing ~10^6 phosphorus and hydrogen spins associated with single InP and
GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor,
control, and capture fluctuations in the ensemble's spin polarization in
real-time and store them for extended periods. This selective capture of large
polarization fluctuations may provide a route for enhancing the weak magnetic
signals produced by nanometer-scale volumes of nuclear spins. The scheme may
also prove useful for initializing the nuclear hyperfine field of electron spin
qubits in the solid-state.Comment: 18 pages, 5 figure
Group-IV graphene- and graphane-like nanosheets
We performed a first principles investigation on the structural and
electronic properties of group-IV (C, SiC, Si, Ge, and Sn) graphene-like sheets
in flat and buckled configurations and the respective hydrogenated or
fluorinated graphane-like ones. The analysis on the energetics, associated with
the formation of those structures, showed that fluorinated graphane-like sheets
are very stable, and should be easily synthesized in laboratory. We also
studied the changes on the properties of the graphene-like sheets, as result of
hydrogenation or fluorination. The interatomic distances in those graphane-like
sheets are consistent with the respective crystalline ones, a property that may
facilitate integration of those sheets within three-dimensional nanodevices
Optical study of the band structure of wurtzite GaP nanowires
We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140-2.164-2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature- dependence. The excitonic nature of those peaks is critically discussed, leading to a direct band gap o
Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of
considerable technological importance but remains a challenge due to the
amphoteric behavior of the dopant atoms. Here we show that placing a narrow
GaAs quantum well in the AlAs shell effectively getters residual carbon
acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical
studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined
emission. Theoretical calculations of NW electronic structure confirm quantum
confinement of carriers at the core/shell interface due to the presence of
ionized carbon acceptors in the 1~nm GaAs layer in the shell.
Micro-photoluminescence in high magnetic field shows a clear signature of
avoided crossings of the Landau level emission line with the Landau
level TO phonon replica. The coupling is caused by the resonant hole-phonon
interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters
(http://pubs.acs.org/doi/full/10.1021/nl500818k
Crystal Phase Quantum Well Emission with Digital Control
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems
Electrical conductivity of MgSiO3 at high temperatures and pressures: implications for the Earth's mantle
The electrical conductivity of magnesium silicate MgSiO3 has been studied,
using the framework of the first-principles density functional theory and the
Boltzmann transport theory, under the thermodynamic conditions of the Earth's
lower mantle. We find that the conductivity of pristine MgSiO3 depends strongly
on the structural phase of the material, as well as on temperature and
pressure. The conductivity of the perovskite phase increases with increasing
pressure (depth of the lower mantle) up to 90 GPa, then decreases at higher
pressures due to a change in the material's band gap transition from direct to
indirect. Finally, the structural phase transition that MgSiO3 undergoes near
the bottom of the lower mantle, from perovskite to post-perovskite, causes an
increase in the conductivity of MgSiO3, which should contribute to the increase
in the electrical conductivity of the Earth's mantle under the thermodynamic
conditions of the Earth's D" layer.Comment: 16 pages, 4 figures, 2 table
- …
