19 research outputs found

    Simulation of cell movement through evolving environment: a fictitious domain approach

    Get PDF
    A numerical method for simulating the movement of unicellular organisms which respond to chemical signals is presented. Cells are modelled as objects of finite size while the extracellular space is described by reaction-diffusion partial differential equations. This modular simulation allows the implementation of different models at the different scales encountered in cell biology and couples them in one single framework. The global computational cost is contained thanks to the use of the fictitious domain method for finite elements, allowing the efficient solve of partial differential equations in moving domains. Finally, a mixed formulation is adopted in order to better monitor the flux of chemicals, specifically at the interface between the cells and the extracellular domain

    Modélisation du ruissellement en relation avec l'évolution saisonnière de la végétation (mil, arachide, jachère) au centre Sénégal

    Get PDF
    Sous climat soudanien caractérisé par une unique saison des pluies, les sols sont dénudés en fin de saison sèche suite au pâturage et aux travaux préparatoires au semis. Le ruissellement intense en début d'hivernage diminue progressivement avec la mise en place des couverts végétaux.L'influence du développement de la végétation sur le ruissellement est étudié au moyen des données pluie-débit de 4 parcelles (50 m2) couvertes en mil, arachide, jachère ou maintenue dénudée du centre Sénégal au cours d'une saison des pluies (1994). Un modèle analogique de ruissellement ‡ stockage de surface (BADER, 1994), dans lequel l'infiltration est une fonction croissante de la lame d'eau en surface du sol est ajusté sur les données. Le modèle présente 3 paramètres: un paramètre de transfert n, un paramètre de ruissellement Hl et un paramètre d'infiltration S. Une analyse de sensibilité menée sur les données de la parcelle de sol nu montre que le paramètre n est le plus sensible des trois.Le calage numérique des paramètres sur chaque crue au cours de l'hivernage permet d'étudier leur évolution temporelle. Cette évolution est cohérente avec l'occupation de chaque parcelle. Les paramètres n et S de la parcelle de sol nu sont invariants sur la saison tandis que ceux des parcelles en végétation s'écartent progressivement des valeurs obtenues sur sol nu. Pour les parcelles en végétation, les valeurs de S divergent de celles du sol nu lorsque l'indice radiométrique de végétation (N.D.V.I.) servant à l'estimation du couvert dépasse 0.30 - 0.35 environ. L'évolution des paramètres n et S des parcelles en végétation peut être reliée au temps écoulé depuis le semis (mil, arachide) ou le sarclage initial (jachère) et à l'état d'humectation du sol (pour S). On montre également que le paramètre Hl peut être estimé linéairement à partir d'un indice de rugosité de surface descriptif de la microtopographie.The Sudanese climate is characterized by a rainy season and a dry season (mean annual rainfall between 400 and 900 mm). At the end of the dryseason (June in the northern hemisphere), the landscape is completely bare under the effect of animal grazing or soil tillage. During the first rainfalls this leads to high runoff coefficients. These runoff coefficients decrease gradually as the amount of vegetation increases during the growing season (RODIER (1984-1985); ALBERGEL (1988)).This is particularly true in the Groundnut basin of central Senegal where millet and groundnut are cultivated every other year. As the vegetative cover increases, a system of macropores develops in the soil and preferentially induces water infiltration through mesofauna burrows and along root systems. Hence, many authors have distinguished matrix infiltration governed by the generalized Darcy's law, from preferential infiltration through macropores characterized by a strongly heterogeneous spatial distribution (GERMAN, 1990). These macropores are thought to be responsible for the proportional increase in infiltration with increase in rainfall intensity observed on several experimental plots (BOUCHARDEAU and RODIER, 1960; VALENTIN, 1985; COLLINET,1985; ALBERGEL, 1988). A more complete surface ponding or a differential distribution of the macroporosity in relation with the microtopography can contribute to this phenomenon.A conceptual runoff model accounting for surface storage, which views infiltration as a function of water depth on the ground surface, is proposed to describe the aforementioned phenomenon under three characteristic vegetative canopies of central Senegal (millet, groundnut and fallow). The model (BADER, 1994) is a distributed, three parameter model that accounts for transfer between spatial elements (parameter n), runoff (parameter Hl) and infiltration (parameter S). The model solves the equation of continuity according to an explicit scheme (forward time). The discharge exiting a spatial element is defined by a power function based on the water depth on the element. The value of the transfer parameter n (dimensionless) depends on the roughness and slope of the soil surface. Parameter Hl (meters) is equivalent to the water depth from which runoff occurs and is found in the discharge expression. Infiltration is defined as the product of the squareroot of the depth of ponded water of a plot and a S parameter (dimensionless) representing surface porosity.The experimental work took place on 4 rectangular 50m2 plots (10 m by 5 m) that were initially bare and weedy. At the beginning of the rainy season, two plots were cultivated in millet and groundnut, one left fallow and the fourth stripped by a powerful herbicide. The runoff was measured by a capacitive gauging system with each tank being equipped with a pressure transducer connected to a datalogger. A tipping bucket raingauge was also connected to the datalogger and rainfall and runoff were recorded simultaneously. The measurements were made to a precision of 4 mm in the tanks (0.16 mm uncertainty for surface runoff depth). With a total seasonal rainfall of 711 mm in 1994, the cumulative surface runoff varied between 40mm for the fallow plot to 150 mm for the bare soil plot. The cultivated groundnut and millet plots had cumulative runoff depths of 55 and 60 mm, respectively. The fallow plot would have had less runoff if it had been more than one-year old. The microtopography of each plot was evaluated using a profile meter. The surface roughness was estimated by the standard-error of measured relative elevations (GUILLOBEZ and ZOUGMORE, 1994). Measurements were taken after each significant rainfall and following tillage operations. The index of roughness varied following vigorous weeding of the groundnut plot to 5 mm for the fallow plot whose microtopography remained constant throughout the season. The development of the vegetative cover was indirectly followed by the calculation of a vegetation index (NDVI) derived from red and near infrared reflectances measured with a field radiometer. Although this index tends to saturate with full ground cover, it nevertheless remains a good indicator at the start of vegetative growth.The proposed model was used to reproduce measured runoff during several storm events. Calculations were undertaken with a 10-s time step on a 1m-long spatial element with a uniform set of parameters for each plot. A sensitivity analysis was performed for all runoff events on the bare plot. Hydrograph characteristics (runoff volume, peak discharge and time-to-peak) were particularly sensitive to variations in the transfer parameter (n) and to a lesser extent to changes in the infiltration (S) and runoff (Hl) parameters. For the 42 measured runoff hydrographs for all fourplots, the results were excellent: 70% of the simulated hydrographs had a Nash's coefficient greater than or equal to 0.90.For each plot, the seasonal chronicle of each parameter is coherent with the plot cover. The parameters for the bare plot were invariant throughout the rainy season. However, for the other plots, they varied with the vegetative cover. At the beginning of the growing season, they were similar to those obtained on bare soil and, as the vegetative cover increased, they varied until the NDVI exceeded 0.35 (approximately 20 days after seeding). The evolution of the n and S parameters for the cultivated plots was linearly extrapolated from past events (seeding for the cultivated plots and chemical weeding for the fallow plot) and for S to an antecedent precipitation index. Farming practices that modified surface roughness needed to be accounted for as well. For the transfer parameter (n) of the groundnut plot, an increase of approximately 0.4 was observed when a rainfall event followed weeding. No significant increase was seen for the millet plot. A linear relationship between the index of roughness and the roughness parameter (Hl) was also derived

    Hydrological functioning of western African inland valleys explored with a critical zone model

    Get PDF
    Inland valleys are seasonally waterlogged headwater wetlands, widespread across western Africa. Their role in the hydrological cycle in the humid, hard-rock-dominated Sudanian savanna is not yet well understood. Thus, while in the region recurrent floods are a major issue, and hydropower has been recognized as an important development pathway, the scientific community lacks precise knowledge of streamflow (Q) generation processes and how they could be affected by the presence of inland valleys. Furthermore, inland valleys carry an important agronomic potential, and with the strong demographic rates of the region, they are highly subject to undergoing land cover changes. We address both the questions of the hydrological functioning of inland valleys in the Sudanian savanna of western Africa and the impact of land cover changes on these systems through deterministic sensitivity experiments using a physically based critical zone model (ParFlow-CLM) applied to a virtual generic catchment which comprises an inland valley. Model forcings are based on 20 years of data from the AMMA-CATCH observation service and parameters are evaluated against multiple field data (Q, evapotranspiration – ET –, soil moisture, water table levels, and water storage) acquired on a pilot elementary catchment. The hydrological model applied to the conceptual lithological/pedological model proposed in this study reproduces the main behaviours observed, which allowed those virtual experiments to be conducted. We found that yearly water budgets were highly sensitive to the vegetation distribution: average yearly ET for a tree-covered catchment (944&thinsp;mm) exceeds that of herbaceous cover (791&thinsp;mm). ET differences between the two covers vary between 12&thinsp;% and 24&thinsp;% of the precipitation of the year for the wettest and driest years, respectively. Consequently, the tree-covered catchment produces a yearly Q amount of 28&thinsp;% lower on average as compared to a herbaceous-covered catchment, ranging from 20&thinsp;% for the wettest year to 47&thinsp;% for a dry year. Trees also buffer interannual variability in ET by 26&thinsp;% (with respect to herbaceous). On the other hand, pedological features (presence – or absence – of the low-permeability layer commonly found below inland valleys, upstream and lateral contributive areas) had limited impact on yearly water budgets but marked consequences for intraseasonal hydrological processes (sustained/non-sustained baseflow in the dry season, catchment water storage redistribution). Therefore, subsurface features and vegetation cover of inland valleys have potentially significant impacts on downstream water-dependent ecosystems and water uses as hydropower generation, and should focus our attention.</p

    Observed long-term land cover vs climate impacts on the West African hydrological cycle: lessons for the future ? [P-3330-65]

    Get PDF
    West Africa has experienced a long lasting, severe drought as from 1970, which seems to be attenuating since 2000. It has induced major changes in living conditions and resources over the region. In the same period, marked changes of land use and land cover have been observed: land clearing for agriculture, driven by high demographic growth rates, and ecosystem evolutions driven by the rainfall deficit. Depending on the region, the combined effects of these climate and environmental changes have induced contrasted impacts on the hydrological cycle. In the Sahel, runoff and river discharges have increased despite the rainfall reduction (“less rain, more water”, the so-called "Sahelian paradox "). Soil crusting and erosion have increased the runoff capacity of the watersheds so that it outperformed the rainfall deficit. Conversely, in the more humid Guinean and Sudanian regions to the South, the opposite (and expected) “less rain, less water” behavior is observed, but the signature of land cover changes can hardly be detected in the hydrological records. These observations over the past 50 years suggest that the hydrological response to climate change can not be analyzed irrespective of other concurrent changes, and primarily ecosystem dynamics and land cover changes. There is no consensus on future rainfall trend over West Africa in IPCC projections, although a higher occurrence of extreme events (rainstorms, dry spells) is expected. An increase in the need for arable land and water resources is expected as well, driven by economic development and demographic growth. Based on past long-term observations on the AMMA-CATCH observatory, we explore in this work various future combinations of climate vs environmental drivers, and we infer the expected resulting trends on water resources, along the west African eco-climatic gradient. (Texte intégral

    Rainfall risk over the city of Abidjan (CĂ´te d'Ivoire): first contribution of the joint analysis of daily rainfall from a historical record and a recent network of rain gauges

    Get PDF
    Every year, rains cause material damage and human losses, in Abidjan (Côte d'Ivoire). The objective of this study is to contribute to the characterization of the rain hazard in the District of Abidjan. The available data are made up of daily rainfall from a historical station “Abidjan airport” (1961–2014) and an academic network of rain gauges (21) progressively implemented in Abidjan since 2015. A descriptive analysis (date of occurrence, rainfall depth, mean wet days intensity and number of rainy days) on the Highest Cumulative Rainfall Periods (HCRP: 60 d) is conducted on the long-term station. The periods of highest risk of flooding during the long and short rainy seasons are characterized. The Experimental variograms of extreme rainfalls derived from the current network, allow to evaluate their extensions according to the rainy season.</p

    Agroforesterie et services écosystémiques en zone tropicale

    Get PDF
    Respectueux de l’environnement et garantissant une sécurité alimentaire soutenue par la diversification des productions et des revenus qu’ils procurent, les systèmes agroforestiers apparaissent comme un modèle prometteur d’agriculture durable dans les pays du Sud les plus vulnérables aux changements globaux. Cependant, ces systèmes agroforestiers ne peuvent être optimisés qu’à condition de mieux comprendre et de mieux maîtriser les facteurs de leurs productions. L’ouvrage présente un ensemble de connaissances récentes sur les mécanismes biophysiques et socio-économiques qui sous-tendent le fonctionnement et la dynamique des systèmes agroforestiers. Il concerne, d’une part les systèmes agroforestiers à base de cultures pérennes, telles que cacaoyers et caféiers, de régions tropicales humides en Amérique du Sud, en Afrique de l’Est et du Centre, d’autre part les parcs arborés et arbustifs à base de cultures vivrières, principalement de céréales, de la région semi-aride subsaharienne d’Afrique de l’Ouest. Il synthétise les dernières avancées acquises grâce à plusieurs projets associant le Cirad, l’IRD et leurs partenaires du Sud qui ont été conduits entre 2012 et 2016 dans ces régions. L’ensemble de ces projets s’articulent autour des dynamiques des systèmes agroforestiers et des compromis entre les services de production et les autres services socio-écosystémiques que ces systèmes fournissent

    Can woody plants management provide soil amendments to enhance agroecosystem productivity and resilience in West Africa?

    No full text
    International audienceSoil degradation and fertility loss pose severe threats to the livelihood of farmers in sub-saharan regions. Due to the need for land, continuous cultivation with staple food has gradually replaced previous shifting cultivation systems, so that fallow periods have considerably reduced and no longer fulfill their soil regeneration role. Here we explore the use and management of native woody resources for providing an in situ renewable organic amendment as a basis for increasing soil carbon and biological status, thus sustaining fertility, enhancing water capture and utilization and therefore buffering climatic stress
    corecore