11 research outputs found

    Filaggrin Genotype Determines Functional and Molecular Alterations in Skin of Patients with Atopic Dermatitis and Ichthyosis Vulgaris

    Get PDF
    BACKGROUND: Several common genetic and environmental disease mechanisms are important for the pathophysiology behind atopic dermatitis (AD). Filaggrin (FLG) loss-of-function is of great significance for barrier impairment in AD and ichthyosis vulgaris (IV), which is commonly associated with AD. The molecular background is, however, complex and various clusters of genes are altered, including inflammatory and epidermal-differentiation genes. OBJECTIVE: The objective was to study whether the functional and molecular alterations in AD and IV skin depend directly on FLG loss-of-function, and whether FLG genotype determines the type of downstream molecular pathway affected. METHODS AND FINDINGS: Patients with AD/IV (n = 43) and controls (n = 15) were recruited from two Swedish outpatient clinics and a Swedish AD family material with known FLG genotype. They were clinically examined and their medical history recorded using a standardized questionnaire. Blood samples and punch biopsies were taken and trans-epidermal water loss (TEWL) and skin pH was assessed with standard techniques. In addition to FLG genotyping, the STS gene was analyzed to exclude X-linked recessive ichthyosis (XLI). Microarrays and quantitative real-time PCR were used to compare differences in gene expression depending on FLG genotype. Several different signalling pathways were altered depending on FLG genotype in patients suffering from AD or AD/IV. Disease severity, TEWL and pH follow FLG deficiency in the skin; and the number of altered genes and pathways are correlated to FLG mRNA expression. CONCLUSIONS: We emphasize further the role of FLG in skin-barrier integrity and the complex compensatory activation of signalling pathways. This involves inflammation, epidermal differentiation, lipid metabolism, cell signalling and adhesion in response to FLG-dependent skin-barrier dysfunction

    Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MYG1 </it>(<it>Melanocyte proliferating gene 1</it>, also C12orf10 in human) is a ubiquitous nucleo-mitochondrial protein, involved in early developmental processes and in adult stress/illness conditions. We recently showed that <it>MYG1 </it>mRNA expression is elevated in the skin of vitiligo patients. Our aim was to examine nine known polymorphisms in the <it>MYG1 </it>gene, to investigate their functionality, and to study their association with vitiligo susceptibility.</p> <p>Methods</p> <p>Nine single nucleotide polymorphisms (SNPs) in the <it>MYG1 </it>locus were investigated by SNPlex assay and/or sequencing in vitiligo patients (n = 124) and controls (n = 325). <it>MYG1 </it>expression in skin biopsies was detected by quantitative-real time PCR (Q-RT-PCR) and polymorphisms were further analysed using luciferase and YFP reporters in the cell culture.</p> <p>Results</p> <p>Control subjects with -119G promoter allele (rs1465073) exhibited significantly higher <it>MYG1 </it>mRNA levels than controls with -119C allele (<it>P </it>= 0.01). Higher activity of -119G promoter was confirmed by luciferase assay. Single marker association analysis showed that the -119G allele was more frequent in vitiligo patients (47.1%) compared to controls (39.3%, <it>P </it>< 0.05, OR 1.37, 95%CI 1.02-1.85). Analysis based on the stage of progression of the vitiligo revealed that the increased frequency of -119G allele occurred prevalently in the group of patients with active vitiligo (n = 86) compared to the control group (48.2% <it>versus </it>39.3%, <it>P </it>< 0.05; OR 1.44, 95%CI 1.02-2.03). Additionally, we showed that glutamine in the fourth position (in Arg4Gln polymorphism) completely eliminated mitochondrial entrance of YFP-tagged Myg1 protein in cell culture. The analysis of available EST, cDNA and genomic DNA sequences revealed that Myg1 4Gln allele is remarkably present in human populations but is never detected in homozygous state according to the HapMap database.</p> <p>Conclusions</p> <p>Our study demonstrated that both <it>MYG1 </it>promoter polymorphism -119C/G and Arg4Gln polymorphism in the mitochondrial signal of Myg1 have a functional impact on the regulation of the <it>MYG1 </it>gene and promoter polymorphism (-119C/G) is related with suspectibility for actively progressing vitiligo.</p

    The Insulin Receptor Substrate 1 (Irs1) in Intestinal Epithelial Differentiation and in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization

    Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.</p> <p>Methods</p> <p>To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.</p> <p>Results</p> <p>Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.</p> <p>Conclusion</p> <p>Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.</p

    Influence of simulated gastrointestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells

    No full text
    Novel aspects of engineered nanoparticles offer many advantages for optimising food products and packaging. However, their potential hazards in the gastrointestinal tract require further investigation. We evaluated the toxic and inflammatory potential of two types of particles that might become increasingly relevant to the food industry, namely SiO2 and ZnO. The materials were characterised for their morphology, oxidant generation and hydrodynamic behaviour. Cytotoxicity and interleukin-8 mRNA and protein expression were evaluated in human intestinal Caco-2 cells. Particle pretreatment under simulated gastric and intestinal pH conditions resulted in reduced acellular ROS formation but did not influence cytotoxicity (WST-1 assay) or IL-8 expression. However, the differentiation status of the cells markedly determined the cytotoxic potency of the particles. Further research is needed to determine the in vivo relevance of our current observations regarding the role of particle aggregation and the stage of intestinal epithelial cell differentiation in determining the hazards of ingested particles

    Gene expression of desaturase (FADS1 and FADS2) and elongase (ELOVL5) enzymes in peripheral blood: association with polyunsaturated fatty acid levels and atopic eczema in 4-year-old children

    Get PDF
    Background: It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA) levels in children with atopic eczema (AE). We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5) is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children. Methods: AE (n=20) and non-AE (n=104) children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA) Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson’s rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE. Results: Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA) and arachidonic (AA) acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively), but no differences were found for FADS1. Conclusions and Significance: Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children.The following sources of funding supported the work: The Spanish Ministry of Science and Innovation for the financial support given to the research project AGL2009-09730/ALI. www.micinn.es. The Spanish Ministry of Economy and Competitiveness for the financial support given to the research project BUF2012-40254-C03-02. www.mineco.gob.e
    corecore