8 research outputs found

    Modeling The Effect Of Habitat Selection Mechanisms On Population Responses To Landscape Structure

    No full text
    Novel habitats can become ecological traps for mobile animals if individuals consistently select them over habitats with better fitness consequences. Due to challenges with the measurement of habitat selection and quality, ecological traps are difficult to study in the field. Previous modeling approaches have overlooked the importance of selection cues as a key component in the mechanisms giving rise to ecological traps. We created a spatially explicit, individual-based simulation model to evaluate the effects of landscape structure on population dynamics of a hypothetical species under two mechanisms of habitat selection. In habitat-based selection, individuals preferred high-quality patches (leading to adaptive outcomes), selected patches at random (equal-preference) or preferred lower-quality patches (severe ecological traps). In cue-based selection they chose based on a structural attribute that was not directly related to fitness (canopy cover). We applied the model to the case of resident birds in landscapes composed of remnant forests and shade coffee agriculture. We designed simulation experiments with scenarios varying in landscape composition, configuration, search area and criteria for habitat preference. While all factors affected population size and individual fitness, the most important variables were proportion of high-quality habitat in the landscape, criteria for habitat preference and their interaction. The specific arrangement of habitat patches and search area had weaker and sometimes unexpected effects, mainly through increasing outcome variance. There was more variation among scenarios when selection was habitat-based than cue-based, with outcomes of the latter being intermediate between those of adaptive and equal-preference choices. Because the effects of ecological traps could be buffered by increasing the amount of high-quality habitat in the landscape, our results suggest that to truly understand species adaptation to habitat transformation we must always include landscape context in our analyses, and make an effort to find the appropriate scales and cues that organisms use for habitat selection

    Modeling the effect of habitat selection mechanisms on population responses to landscape structure

    No full text
    Novel habitats can become ecological traps for mobile animals if individuals consistently select them over habitats with better fitness consequences. Due to challenges with the measurement of habitat selection and quality, ecological traps are difficult to study in the field. Previous modeling approaches have overlooked the importance of selection cues as a key component in the mechanisms giving rise to ecological traps. We created a spatially explicit, individual-based simulation model to evaluate the effects of landscape structure on population dynamics of a hypothetical species under two mechanisms of habitat selection. In habitat-based selection, individuals preferred high-quality patches (leading to adaptive outcomes), selected patches at random (equal-preference) or preferred lower-quality patches (severe ecological traps). In cue-based selection they chose based on a structural attribute that was not directly related to fitness (canopy cover). We applied the model to the case of resident birds in landscapes composed of remnant forests and shade coffee agriculture. We designed simulation experiments with scenarios varying in landscape composition, configuration, search area and criteria for habitat preference. While all factors affected population size and individual fitness, the most important variables were proportion of high-quality habitat in the landscape, criteria for habitat preference and their interaction. The specific arrangement of habitat patches and search area had weaker and sometimes unexpected effects, mainly through increasing outcome variance. There was more variation among scenarios when selection was habitat-based than cue-based, with outcomes of the latter being intermediate between those of adaptive and equal-preference choices. Because the effects of ecological traps could be buffered by increasing the amount of high-quality habitat in the landscape, our results suggest that to truly understand species adaptation to habitat transformation we must always include landscape context in our analyses, and make an effort to find the appropriate scales and cues that organisms use for habitat selection

    Volumen 18 Número 1

    No full text
    Revista seriada del Instituto Humboldt en asocio con el Invemar, el Instituto de Ciencias Naturales (ICN) y el Missouri Botanical Garden, como una estrategia para ampliar la base del conocimiento de uno de los países con mayor diversidad biológica del mundo. Inicia como una publicación de listados de especies pero en 2005 amplía su espectro temático hacia la sistemática y la biogeografía. En 2010, a propósito del Año Internacional de la Biodiversidad y en pro del conocimiento, la conservación y el uso sostenible de la biodiversidad, se abre a un público más amplio, considerando trabajos inéditos de investigación sobre botánica, zoología, ecología, biología, limnología, pesquerías, conservación, manejo de recursos y uso de la biodiversidad, con buena aceptación por parte de la comunidad científica y académica. En 2013, en asocio con el SiB Colombia y con el apoyo de la GBIF, se institucionaliza la inclusión de Artículos de Datos (Data Papers) en Biota Colombiana

    Biota Colombiana Volumen 18 No. 1 (2017)

    No full text
    Volumen 18 Número 1 de la revista Biota ColombianaBogotá, Colombi

    Volumen 18 Número 1

    No full text
    Revista seriada del Instituto Humboldt en asocio con el Invemar, el Instituto de Ciencias Naturales (ICN) y el Missouri Botanical Garden, como una estrategia para ampliar la base del conocimiento de uno de los países con mayor diversidad biológica del mundo.Inicia como una publicación de listados de especies pero en 2005 amplía su espectro temático hacia la sistemática y la biogeografía. En 2010, a propósito del Año Internacional de la Biodiversidad y en pro del conocimiento, la conservación y el uso sostenible de la biodiversidad, se abre a un público más amplio, considerando trabajos inéditos de investigación sobre botánica, zoología, ecología, biología, limnología, pesquerías, conservación, manejo de recursos y uso de la biodiversidad, con buena aceptación por parte de la comunidad científica y académica. En 2013, en asocio con el SiB Colombia y con el apoyo de la GBIF, se institucionaliza la inclusión de Artículos de Datos (Data Papers) en Biota Colombiana.Artículo revisado por pare

    Global COVID-19 lockdown highlights humans as both threats and custodians of the environment

    Get PDF
    The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness
    corecore