49 research outputs found

    Metabolic Changes Following a 1-Year Diet and Exercise Intervention in Patients With Type 2 Diabetes

    Get PDF
    Objective—To characterize the relationships among longterm improvements in peripheral insulin sensitivity (glucose disposal rate [GDR]), fasting glucose, and free fatty acids (FFAs) and concomitant changes in weight and adipose tissue mass and distribution induced by lifestyle intervention in obese individuals with type 2 diabetes. Research Design And Methods—We measured GDR, fasting glucose, and FFAs during a euglycemic clamp and adipose tissue mass and distribution, organ fat, and adipocyte size by dual-energy X-ray absorptiometry, CT scan, and adipose tissue biopsy in 26 men and 32 women in the Look-AHEAD trial before and after 1 year of diet and exercise aimed at weight loss. Results—Weight and fasting glucose decreased significantly (P _ 0.0001) and significantly more in men than in women (_12 vs. _8% and _16 vs. _7%, respectively; P _ 0.05), while FFAs during hyperinsulinemia decreased and GDR increased significantly (P _ 0.00001) and similarly in both sexes (_53 vs. _41% and 63 vs. 43%; P _ NS). Men achieved a more favorable fat distribution by losing more from upper compared with lower and from deeper compared with superficial adipose tissue depots (P _ 0.01). Decreases in weight and adipose tissue mass predicted improvements in GDR but not in fasting glucose or fasting FFAs; however, decreases in FFAs during hyperinsulinemia significantly determined GDR improvements. Hepatic fat was the only regional fat measure whose change contributed independently to changes in metabolic variables. Conclusions—Patients with type 2 diabetes undergoing a 1-year lifestyle intervention had significant improvements in GDR, fasting glucose, FFAs and adipose tissue distribution. However, changes in overall weight (adipose tissue mass) and hepatic fat were the most important determinants of metabolic improvements.Jeanine B. Albu, Leonie K. Heilbronn, David E. Kelley, Steven R. Smith, Koichiro Azuma, Evan S. Berk, F. Xavier Pi-Sunyer, Eric Ravussin, and the Look AHEAD Adipose Research Grou

    Reversal of Obesity and Insulin Resistance by a Non-Peptidic Glucagon-Like Peptide-1 Receptor Agonist in Diet-Induced Obese Mice

    Get PDF
    BACKGROUND: Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment. CONCLUSIONS/SIGNIFICANCE: Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity
    corecore