519 research outputs found
Problems of the rotating-torsion-balance limit on the photon mass
We discuss the problems (and the promise) of the ingenious method introduced
by Lakes, and recently improved on by Luo, to detect a possible small photon
mass by measuring the ambient magnetic vector potential from large scale
magnetic fields. We also point out how an improved ``indirect'' limit can be
obtained using modern measurements of astrophysical magnetic fields and plasmas
and that a good ``direct'' limit exists using properties of the solar wind.Comment: 4 pages, revised title and content
Slow solitary waves in multi-layered magnetic structures
The propagation of slow sausage surface waves in a multi-layered magnetic configuration is considered. The magnetic configuration consists of a central magnetic slab sandwiched between two identical magnetic slabs (with equilibrium quantities different from those in the central slab) which in turn are embedded between two identical semi-infinite regions. The dispersion equation is obtained in the linear approximation. The nonlinear governing equation describing waves with a characteristic wavelength along the central slab much larger than the slab thickness is derived. Solitary wave solutions to this equation are obtained in the case where these solutions deviate only slightly from the algebraic soliton of the Benjamin-Ono equation
Formation of Pillars at the Boundaries between H II Regions and Molecular Clouds
We investigate numerically the hydrodynamic instability of an ionization
front (IF) accelerating into a molecular cloud, with imposed initial
perturbations of different amplitudes. When the initial amplitude is small, the
imposed perturbation is completely stabilized and does not grow. When the
initial perturbation amplitude is large enough, roughly the ratio of the
initial amplitude to wavelength is greater than 0.02, portions of the IF
temporarily separate from the molecular cloud surface, locally decreasing the
ablation pressure. This causes the appearance of a large, warm HI region and
triggers nonlinear dynamics of the IF. The local difference of the ablation
pressure and acceleration enhances the appearance and growth of a multimode
perturbation. The stabilization usually seen at the IF in the linear regimes
does not work due to the mismatch of the modes of the perturbations at the
cloud surface and in density in HII region above the cloud surface. Molecular
pillars are observed in the late stages of the large amplitude perturbation
case. The velocity gradient in the pillars is in reasonably good agreement with
that observed in the Eagle Nebula. The initial perturbation is imposed in three
different ways: in density, in incident photon number flux, and in the surface
shape. All cases show both stabilization for a small initial perturbation and
large growth of the second harmonic by increasing amplitude of the initial
perturbation above a critical value.Comment: 21 pages, 8 figures, accepted for publication in ApJ. high resolution
figures available upon reques
Formation of convective cells in the scrape-off layer of the CASTOR tokamak
Understanding of the scrape-off layer (SOL) physics in tokamaks requires
diagnostics with sufficient temporal and spatial resolution. This contribution
describes results of experiments performed in the SOL of the CASTOR tokamak
(R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the
whole poloidal cross section. The individual probes measure either the ion
saturation current of the floating potential with the spatial resolution up to
3 mm. Experiments are performed in a particular magnetic configuration,
characterized by a long parallel connection length in the SOL, L_par ~q2piR. We
report on measurements in discharges, where the edge electric field is modified
by inserting a biased electrode into the edge plasma. In particular, a complex
picture is observed, if the biased electrode is located inside the SOL. The
poloidal distribution of the floating potential appears to be strongly
non-uniform at biasing. The peaks of potential are observed at particular
poloidal angles. This is interpreted as formation of a biased flux tube, which
emanates from the electrode along the magnetic field lines and snakes q times
around the torus. The resulting electric field in the SOL is 2-dimensional,
having the radial as well as the poloidal component. It is demonstrated that
the poloidal electric field E_pol convects the edge plasma radially due to the
E_pol x B_T drift either inward or outward depending on its sign. The
convective particle flux is by two orders of magnitude larger than the
fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Current driven rotating kink mode in a plasma column with a non-line-tied free end
First experimental measurements are presented for the kink instability in a
linear plasma column which is insulated from an axial boundary by finite sheath
resistivity. Instability threshold below the classical Kruskal-Shafranov
threshold, axially asymmetric mode structure and rotation are observed. These
are accurately reproduced by a recent kink theory, which includes axial plasma
flow and one end of the plasma column that is free to move due to a
non-line-tied boundary condition.Comment: 4 pages, 6 figure
An alternative to the plasma emission model: Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts
1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to
model EM wave emission generation in the context of solar type III radio
bursts. The model studies generation of EM waves by a super-thermal, hot beam
of electrons injected into a plasma thread that contains uniform longitudinal
magnetic field and a parabolic density gradient. In effect, a single magnetic
line connecting Sun to earth is considered, for which several cases are
studied. (i) We find that the physical system without a beam is stable and only
low amplitude level EM drift waves (noise) are excited. (ii) The beam injection
direction is controlled by setting either longitudinal or oblique electron
initial drift speed, i.e. by setting the beam pitch angle. In the case of zero
pitch angle, the beam excites only electrostatic, standing waves, oscillating
at plasma frequency, in the beam injection spatial location, and only low level
EM drift wave noise is also generated. (iii) In the case of oblique beam pitch
angles, again electrostatic waves with same properties are excited. However,
now the beam also generates EM waves with the properties commensurate to type
III radio bursts. The latter is evidenced by the wavelet analysis of transverse
electric field component, which shows that as the beam moves to the regions of
lower density, frequency of the EM waves drops accordingly. (iv) When the
density gradient is removed, electron beam with an oblique pitch angle still
generates the EM radiation. However, in the latter case no frequency decrease
is seen. Within the limitations of the model, the study presents the first
attempt to produce simulated dynamical spectrum of type III radio bursts in
fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle
(non-gyrotropic) electron beam, that is an alternative to the plasma emission
classical mechanism.Comment: Physics of Plasmas, in press, May 2011 issue (final accepted version
Waves on the surface of the Orion molecular cloud
Massive stars influence their parental molecular cloud, and it has long been
suspected that the development of hydrodynamical instabilities can compress or
fragment the cloud. Identifying such instabilities has proved difficult. It has
been suggested that elongated structures (such as the `pillars of creation')
and other shapes arise because of instabilities, but alternative explanations
are available. One key signature of an instability is a wave-like structure in
the gas, which has hitherto not been seen. Here we report the presence of
`waves' at the surface of the Orion molecular cloud near where massive stars
are forming. The waves seem to be a Kelvin-Helmholtz instability that arises
during the expansion of the nebula as gas heated and ionized by massive stars
is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur
Magnetic Tower Outflows from a Radial Wire Array Z-pinch
We present the first results of high energy density laboratory astrophysics
experiments which explore the evolution of collimated outflows and jets driven
by a toroidal magnetic field. The experiments are scalable to astrophysical
flows in that critical dimensionless numbers such as the Mach number, the
plasma beta and the magnetic Reynolds number are all in the astrophysically
appropriate ranges. Our experiments use the MAGPIE pulsed power machine and
allow us to explore the role of magnetic pressure in creating and collimating
the outflow as well as showing the creation of a central jet within the broader
outflow cavity. We show that currents flow along this jet and we observe its
collimation to be enhanced by the additional hoop stresses associated with the
generated toroidal field. Although at later times the jet column is observed to
go unstable, the jet retains its collimation. We also present simulations of
the magnetic jet evolution using our two-dimensional resistive
magneto-hydrodynamic (MHD) laboratory code. We conclude with a discussion of
the astrophysical relevance of the experiments and of the stability properties
of the jet.Comment: Accepted by MNRAS. 17 pages without figures. Full version with
figures can be found at
http://www.pas.rochester.edu/~afrank/labastro/MF230rv.pd
- …
