578 research outputs found

    Collective and single cell behavior in epithelial contact inhibition

    Get PDF
    Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as "contact inhibition". The study presented here provides a quantitative characterization of contact inhibition dynamics on tissue-wide and single cell levels. Using long-term tracking of cultured MDCK cells we demonstrate that inhibition of cell division in a confluent monolayer follows inhibition of cell motility and sets in when mechanical constraint on local expansion causes divisions to reduce cell area. We quantify cell motility and cell cycle statistics in the low density confluent regime and their change across the transition to epithelial morphology which occurs with increasing cell density. We then study the dynamics of cell area distribution arising through reductive division, determine the average mitotic rate as a function of cell size and demonstrate that complete arrest of mitosis occurs when cell area falls below a critical value. We also present a simple computational model of growth mechanics which captures all aspects of the observed behavior. Our measurements and analysis show that contact inhibition is a consequence of mechanical interaction and constraint rather than interfacial contact alone, and define quantitative phenotypes that can guide future studies of molecular mechanisms underlying contact inhibition

    Obere Altersgrenze fĂĽr Kinderkliniken in der Schweiz

    Full text link
    Kinderkliniken in der Schweiz sollen die ambulante und stationäre Behandlung für alle Jugendlichen bis mindestens 18 Jahre anbieten. Der Transitionsprozess von Jugendlichen von der Pädiatrie in die Erwachsenenmedizin soll frühzeitig geplant werden. Der allein vom chronologischen Alter abhängige Transfer von Jugendlichen in die Erwachsenenmedizin soll aufgegeben werden. Stattdessen sollen Selbst-Management-Fähigkeiten des jugendlichen Patienten sowie seine Kompetenz in der Interessenwahrnehmung gegenüber dem Behandlungsteam ausschlaggebend sein für die Beurteilung der Bereitschaft für einen Transfer. Fachpersonen der Erwachsenenmedizin, welche über wenig Erfahrung in der Behandlung von jugendlichen Patienten verfügen, sollen in ihren Bemühungen unterstützt werden, Jugendliche und junge Erwachsene altersangemessen und umfassend unter Berücksichtigung biopsychosozialer Entwicklungsaspekte zu betreuen. Gewisse Patienten mit angeborenen seltenen Krankheiten benötigen unter Umständen eine Langzeit-Zusammenarbeit zwischen den pädiatrischen Spezialisten und dem erwachsenen- medizinischen Behandlungsteam bis weit über 18 Lebensjahre hinaus

    Synthesis, characterization, antibacterial activity and cytotoxicity of hollow /TiOâ‚‚-coated CeOâ‚‚ nanocontainers encapsulating silver nanoparticles for controlled silver release

    Get PDF
    Biomaterials as implants are being applied more extensively in medicine due to their on-going development and associated improvements, and the increase in human life expectancy. Nonetheless, biomaterial-related infections, as well as propagating bacterial resistance, remain significant issues. Therefore, there is a growing interest for silver-based drugs because of their efficient and broad-range antimicrobial activity and low toxicity to humans. Most newly-developed silver-based drugs have an extremely fast silver-ion release, increasing adverse biological impact to the surrounding tissue and achieving only short-term antimicrobial activity. Nanoencapsulation of these drugs is hypothesized as beneficial for controlling silver release, and thus is the aim of the present study. Initially, an amorphous or crystalline (anatase) titania (TiOâ‚‚) coating was synthesized around silver nanoparticle-containing (AgNP) ceria (CeOâ‚‚) nanocontainers using a sonication method forming AgNP/CeOâ‚‚/TiOâ‚‚ nanocontainers. These nanocontainers were characterized by high-resolution transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, gas sorption experiments and energy-dispersive X-ray spectroscopy. Silver release, monitored by using inductively coupled plasma optical emission spectroscopy, showed that these containers prevented silver release in water at neutral pH, and released the silver in concentrated nitric acid solution (pH = 1.1). The AgNP/CeOâ‚‚/TiOâ‚‚ nanocontainers showed an antibacterial activity against E. coli, however a concentration-dependent cytotoxicity towards a model epithelial barrier cell type (A549 cells) was observed. These nanocontainers offer the concept of potentially controlling silver delivery for the prevention of implant-associated infections

    Formation of drug nanocrystals under nanoconfinement afforded by liposomes

    Get PDF
    Nanocrystals of drug substances have important therapeutic applications, but their preparation is often difficult due to size control in bottom up approaches, or energetic milling and surface activation in top down processing. In this study, confinement within liposome nanocompartments is demonstrated to enable drug crystallization with a high aspect ratio but limited growth resulting in nanocrystals, using a simple freeze–thaw process which is anticipated to be amenable to large scale preparation. After the freeze–thaw, cryo-transmission electron microscopy (cryoTEM) imaging and cryo-electron tomography revealed that the majority of the liposomes contained a single drug nanocrystal, observed to physically stretch but not burst the liposomes, and the composition of the freeze–thaw medium altered the aspect ratio of the drug nanocrystals. Small angle X-ray scattering and dynamic depolarized light scattering were used to confirm the asymmetric nature of particles in suspension to exclude the cryoTEM preparation process as a contributor to the particle morphology. In assessing potential use in controlled release drug delivery, the in vitro release rate of ciprofloxacin from liposomes containing the nanocrystals revealed that the rate of dissolution of the nanocrystals became the rate controlling step, in contrast to the lipid bilayer rate controlling function prior to the formation of the crystals. The ability to modulate the release rate of the active ingredient in a complex formulation using simple physical means (e.g., freeze/thaw) is an attractive possibility, especially in highly regulated industries such as pharmaceuticals where qualitative and quantitative changes of composition would require extensive safety evaluations

    Monthly sunspot number time series analysis and its modeling through autoregressive artificial neural network

    Full text link
    This study reports a statistical analysis of monthly sunspot number time series and observes non homogeneity and asymmetry within it. Using Mann-Kendall test a linear trend is revealed. After identifying stationarity within the time series we generate autoregressive AR(p) and autoregressive moving average (ARMA(p,q)). Based on minimization of AIC we find 3 and 1 as the best values of p and q respectively. In the next phase, autoregressive neural network (AR-NN(3)) is generated by training a generalized feedforward neural network (GFNN). Assessing the model performances by means of Willmott's index of second order and coefficient of determination, the performance of AR-NN(3) is identified to be better than AR(3) and ARMA(3,1).Comment: 17 pages, 4 figure

    Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polysialylated neuronal cell adhesion molecule (PSA-NCAM) is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG) and brainstem neuronal populations at prenatal and adult age.</p> <p>Results</p> <p>Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age, the distribution pattern remains fairly steady, whereas the density of immunoreactive structures and the staining intensity may change and are usually higher in newborn than in adult specimens.</p> <p>Conclusion</p> <p>The results obtained show that, in man, the expression of PSA-NCAM in selective populations of central and peripheral neurons occurs not only during prenatal life, but also in adulthood. They support the concept of an involvement of this molecule in the structural and functional neural plasticity throughout life. In particular, the localization of PSA-NCAM in TG primary sensory neurons likely to be involved in the transmission of protopathic stimuli suggests the possible participation of this molecule in the processing of the relevant sensory neurotransmission.</p
    • …
    corecore