279 research outputs found

    Indigenous Presence in the US Imagination: A Study of Native American Representation in Cinema from the Myth of the West to Standing Rock

    Get PDF
    This study is concerned with how identity is given meaning as a discursive act within the cultural expression of cinema – as it broadly operates across popular, more independent, and indigenous filmmaking contexts. Starting with more mainstream and established cinematic approaches, I consider how Native Americans have been represented in Hollywood, the analysis reflecting less the pervasive influence of the Western film genre than working to focus on Eurocentric discourses of US identity, particularly via a constructed and performative Indian-ness. Next, I suggest an aesthetic occurs that opens to a filmic space of negotiation and resistance in which constructions of indigeneity and non-hegemonic cultural narratives can foster alternative knowledge systems across indigenous and independent filmmaking. In recent years, this has been compounded by the democratization of filmmaking through – relatively – inexpensive means. Smart phones and hand-held camera recorders are readily available and have been utilized to great effect in generating audio visual narratives that resist the political and cultural status quo, such as the actions seen at Standing Rock Sioux Reservation in 2016 and 2017. Therefore, the final aspect of the thesis considers how political and environmental resistance combined alternative cultural narratives with film and new media technologies, thus offering an aesthetic through which to consider how film and ideology are constructed and produced. This also assists a consideration of how indigenous identities and traditional life ways are not only maintained, but also formed in the discursive acts at the point of filmmaking and in the affects of film viewing

    De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution

    Get PDF
    Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194  Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians

    Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.

    Get PDF
    BACKGROUND: Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. RESULTS: At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). CONCLUSION: Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish

    2D-IR spectroscopy of proteins in H2O – a perspective

    Get PDF
    The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact on areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardisation of 2D-IR data collection and signal quantification. Ultimately, we visualise a direction of travel towards the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis

    2D-infrared spectroscopy of proteins in water : using the solvent thermal response as an internal standard

    Get PDF
    Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different samples and different instruments is however made difficult by variations in beam alignment, laser intensity, and sample conditions. Recently, we demonstrated that 2D-IR spectroscopy of the protein amide I band can be performed in aqueous (H2O) rather than deuterated (D2O) solvents, and we now report a method that uses the magnitude of the associated thermal response of H2O as an internal normalization standard for 2D-IR spectra. Using the water response, which is temporally separated from the protein signal, to normalize the spectra allows significant reduction of the impact of measurement-to-measurement fluctuations on the data. We demonstrate that this normalization method enables creation of calibration curves for measurement of absolute protein concentrations and facilitates reproducible difference spectroscopy methodologies. These advances make significant progress toward the robust data handling strategies that will be essential for the realization of automated spectral analysis tools for large scale 2D-IR screening studies of protein-containing solutions and biofluids

    Using Near Infrared Reflectance Spectroscopy (NIRS) to predict the protein and energy digestibility of lupin kernel meals when fed to rainbow trout, Oncorhynchus mykiss

    Get PDF
    This study examined the potential of using near infrared spectroscopy (NIRS) to predict the nutrient composition, energy density and the digestible protein and digestible energy values of lupin kernel meals when fed to rainbow trout. A series of 136 lupin kernel meals were assessed for their protein and energy digestibilities using the diet-substitution approach in a series of 10 experiments over a 6-year period from 2002 to 2008. Two reference diets were also included in each experiment. Minimal variance in the digestibility parameters of both reference diets was observed among the experiments ensuring that there was a high degree of robustness in the across-experiment evaluations. The same lupin kernel meal samples were also scanned using a diode array near infrared spectrophotometer (DA-NIRS). The spectra obtained by the DA-NIRS were chemometrically calibrated against both the chemical composition and the digestible value data using multivariate analysis software. The cross validation tests used in this study provide a valid indication of the potential to predict the nutrient composition, energy value and digestible protein and energy values of the lupin kernel meals as used in diets for rainbow trout. That the standard errors of cross validation (SECV) of the parameters investigated were generally commensurate with the cross trial variation seen in the reference sample indicating robust calibrations for the two target parameters of digestible protein and digestible energy. Therefore this study demonstrates that within one raw material type that not only does significant variability in the digestible value of the raw materials exist, but that it is possible to use NIRS technology to provide rapid estimates of the digestible value of those raw materials in near real-time. © 2014 John Wiley & Sons Ltd

    In vivo measurements of muscle specific tension in adults and children

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Authors.To better understand the effects of pubertal maturation on the contractile properties of skeletal muscle in vivo, the present study investigated whether there are any differences in the specific tension of the quadriceps muscle in 20 adults and 20 prepubertal children of both sexes. Specific tension was calculated as the ratio between the quadriceps tendon force and the sum of the physiological cross-sectional area (PCSA) multiplied by the cosine of the angle of pennation of each head within the quadriceps muscle. The maximal quadriceps tendon force was calculated from the knee extension maximal voluntary contraction (MVC) by accounting for EMG-based estimates of antagonist co-activation, incomplete quadriceps activation using the interpolation twitch technique and magnetic resonance imaging (MRI)-based measurements of the patellar tendon moment arm. The PCSA was calculated as the muscle volume, measured from MRI scans, divided by optimal fascicle length, measured from ultrasound images during MVC at the estimated angle of peak quadriceps muscle force. It was found that the quadriceps tendon force and PCSA of men (11.4 kN, 214 cm2) were significantly greater than those of the women (8.7 kN, 152 cm2; P 0.05) between groups: men, 55 ± 11 N cm−2; women, 57.3 ± 13 N cm−2; boys, 54 ± 14 N cm−2; and girls, 59.8 ± 15 N cm−2. These findings indicate that the increased muscle strength with maturation is not due to an increase in the specific tension of muscle; instead, it can be attributed to increases in muscle size, moment arm length and voluntary activation level

    Isolation of galactosyltransferase from human milk and the determination of its N-terminal amino acid sequence

    Full text link
    Galactosyltransferase (EC 2.4.1.22), purified to homogeneity from human milk by affinity chromatography, had an apparent molecular weight of 53,000 as determined by denaturing polyacrylamide gel electrophoresis. Subtration of the estimated contribution of the oligosaccharide portion of the molecule leaves a Mr of 47,000. An N-terminal amino acid sequence analysis of the isolated protein revealed a sequence similar to that found near the 5' end of a cDNA clone isolated by Shaper et al (11), which encodes a 35,500 molecular weight protein. Either the molecular weight of galactosyltransferase, has been overestimated, or a discrepancy exists between the actual molecular weight of galactosyltransferase and that predicted by the bovine cDNA clone isolated by Shaper et al (11).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26099/1/0000175.pd

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis
    • …
    corecore