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 Abstract 

This study examined the potential of using near infrared spectroscopy (NIRS) to predict 

nutrient composition, energy value and digestibility parameters (digestible protein and digestible 

energy) of lupin kernel meals when fed to rainbow trout. A series of 136 lupin kernel meals were 

assessed for their protein and energy digestibilities using the diet-substitution approach in a series of 

10 experiments over a six-year period from 2002 to 2008. Two reference diets were also included in 

each experiment. Minimal variance in the digestibility parameters of both reference diets was 

observed among the experiments ensuring that there was a high degree of robustness in the across-

experiment evaluations. The same lupin kernel meal samples were also scanned using a diode array 

near infrared  spectrophotometer (DA-NIRS).  The spectra were obtained by the DA-NIRS and were 

chemometrically calibrated against both the chemical composition and the digestible value data using 

multivariate analysis software. The results in terms of standard error of cross validation (SECV) and 

correlation coefficient (R2) show good relationships (R2 > 0.8) between the predicted and observed 

parameters for most of the chemical and digestible value parameters assessed. This study therefore 

demonstrates that within one raw material type that not only does significant variability in the 

digestible value of the raw materials exist, but that it is possible to use NIRS technology to provide 

rapid estimates of the digestible value of those raw materials in near real-time.
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Introduction  

Lupin meals are one of many raw materials that have consistently been shown to provide 

sound nutritional value in the diets of a range of aquaculture species (De la Higuera et al., 1988; Burel 

et al., 1998; Glencross et al., 2005; 2011b; Smith et al., 2008). This raw material has also shown 

interesting functional properties in extruded feeds in addition to its nutritional attributes adding extra 

value above their inherent nutritional values (Glencross et al., 2011a; b). 

However, like all raw materials, the composition of lupin meals can vary considerably 

depending on a range of genetic, environmental and processing factors (and of course the interaction 

between these) (Longnecker et al., 1998; Glencross et al., 2007a;b; 2008a;b). Importantly, this 

variability in composition has also been noted to extend to the digestible value of lupin meals 

(Glencross et al., 2008b). This digestible value of lupin meals and indeed, that of most plant proteins 

is usually a direct reflection of their digestible protein and/or energy content (Burel et al., 1998; 

Glencross et al., 2008b, 2011a; b). Accordingly any variability in these digestible value parameters 

(protein and energy) of these meals should translate to variability in their economic value.  

In lupin meals, an increase in protein concentration is typically reciprocated by a decrease in 

the levels of non-starch polysaccharides (NSP) (Glencross et al., 2007b; 2008b). However, high levels 

of some types of NSP have been implicated in lower nutritional value of lupin meals (Glencross, 

2009). In particular the level of lignin has been implicated as a negative factor in protein digestibility 

via both multivariate analysis and empirical means (Glencross et al., 2008b; 2012). Furthermore, 

because lupin meals are largely devoid of starch it is recognised that the nutritional value of these raw 

materials is largely dependent on their protein and lipid components (Glencross et al., 2007b; 2008b).  

This lends the application of these raw materials to the development of rapid analysis assessments of 

nutritional value such as the use of near infrared spectroscopy (NIRS). This is particularly pertinent 

given that virtually all modern aquaculture diets are formulated on a digestible nutrient and energy 

basis (Glencross et al., 2011a). Therefore an improved assessment of the nutritional value of these raw 

materials, and on a near-real-time basis, will provide significant advancements in the responsiveness 

and cost savings in diet formulation by the aquaculture feed industry. 

This study reports on the evaluation of the digestibility of a large number of meals of narrow-

leaf lupins, Lupinus angustifolius when fed to rainbow trout (Oncorhynchys mykiss). Part of this 

dataset is that used in Glencross et al., (2008b), but it is further expanded by an additional 60 samples 

to provide the critical mass of data to enable potential NIRS calibrations to be developed. The 

variability in this data set (digestible nutrient/energy values and chemical composition) was studied 

using diode array near infrared spectroscopy (DA-NIRS). Based on this DA-NIRS analysis of each 

lupin meal this study reports on this potential of DA-NIRS to predict nutrient composition, energy 

value and protein and energy digestibility of narrow-leaf lupin kernel meals. 
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Materials and Methods 

Ingredient and diet development 

 Over a six-year period (2002 – 2008), separate batches of seed of Lupinus angustifolius were 

collected from the Department of Agriculture’s (Western Australia) germ plasm and breeding lines. 

This seed in many cases constituted the same genotype over several seasons, often from the same site. 

Samples of the seed were then split using a small disc-mill and aspirated to separate hulls from 

kernels. A final manual clean of the kernels to remove any remaining hull material was also 

undertaken on each sample to ensure 100% purity of each kernel preparation. Each kernel sample was 

then milled using a RetschTM ZM200 rotor mill (Retsch Pty Ltd, North Ryde, NSW, Australia) with 

a 750 m screen to create consistent particle sized kernel flour.  Additional meals were created based 

on whole-seed and blended seed and kernel meals and were also included in the sample set. In 

addition to the lupin meals, each of the other ingredients used in this study was thoroughly ground 

such that they each passed through a 750 m screen.  

 The experiment design was based on a strategy that allowed for the diet-substitution 

digestibility method to be used (Glencross et al., 2007a). To achieve this a basal diet was formulated 

and prepared to include approximately 500 g kg-1 DM protein, 210 g kg-1 DM fat and an inert marker 

(yttrium oxide at 1 g kg-1) (Table 1). Each test ingredient being studied was added at 30% inclusion to 

a 70% sub-sample of the basal mash (see Table 1). The diets were then processed by addition of water 

(about 30% of mash dry weight) to the combined mash during mixing to form a dough, which was 

subsequently screw pressed using a pasta maker through a 4 mm diameter die. The resultant moist 

pellets were then oven dried at 70C for approximately 12 h before being allowed to cool to ambient 

temperature in the oven. The basal diet for each experiment was prepared in a similar manner, but 

without the addition of any test ingredient. In addition a reference lupin kernel meal was included in 

every digestibility study to allow for cross-comparison across all studies. The basal diet and an 

example test diet formulations and their composition are presented in Table 1.  

 

Fish handling and faecal collection   

 These digestibility studies constituted ten separate experiments. Each experiment had two 

common diets, which included the reference diet and a reference lupin kernel meal (cv. Myallie 2002 

season from Coorow). For each experiment hatchery-reared rainbow trout (Oncorhynchus mykiss, 

Pemberton heat-tolerant strain, Western Australia) were transferred from grow-out ponds to 

experimental tanks (200 L) before being introduced to the experimental diets. Freshwater (salinity < 1 

PSU) of 16.0  0.1C (mean  S.D. across each of the ten experiments) at a flow rate of about 4 L 

min-1 was supplied to each of the tanks. For each experiment the tanks were stocked with 15-20 trout 

of 254  62.5 g (mean  S.D.; n = 10 experiments). Treatments were randomly assigned amongst 48 

tanks within each experiment, with each treatment having three replicates.  



5 

 

 Fish were manually fed the diets once daily to apparent satiety as determined over three 

separate feeding events between 1500 and 1600h each day. The fish were allowed to acclimatise to 

the allocated dietary treatment for seven days before faecal collection commenced consistent with 

earlier studies by this group (Glencross et al., 2005; 2007b; 2008a; b). Faeces were collected using 

manual stripping techniques based on those reported by Glencross et al. (2005; 2007b). Stripped 

faeces were collected during 0800 to 1000h over a four-day period, with each fish only being stripped 

twice and not on consecutive days. Faecal samples collected from different days were pooled within 

tank, and kept frozen at –20C before being freeze-dried in preparation for analysis. 

 

Chemical and digestibility analysis 

 All chemical analyses were carried out by official NATA (National Association of Testing 

Authorities) accredited analytical service providers (Chemistry Centre (WA), East Perth, WA, 

Australia and Animal Health laboratories, Department of Agriculture and Food Western Australia, 

South Perth, WA, Australia) to AOAC (2005) standards. In this regard each of the diet and faecal 

samples were analysed for dry matter, yttrium, ash, phosphorus, nitrogen and gross energy content. 

The dry matter of each sample was calculated by gravimetric analysis following oven drying at 105ºC 

for 24 h. Total yttrium concentrations were determined after mixed acid digestion using inductively 

coupled plasma atomic emission spectrophotometry (ICP-AES). Protein levels were determined based 

on the measurement of total nitrogen content of each sample using a LECO auto-analyser, and based 

on N x 6.25. The amino acid composition of samples was determined by an acid hydrolysis prior to 

separation via HPLC. The acid hydrolysis destroyed tryptophan making it unable to be determined 

using this method. Total lipid content of the diets was determined gravimetrically following extraction 

of the lipids using the chloroform:methanol (2:1). The gross ash content of each sample was 

determined gravimetrically following the loss of mass after combustion of a sample in a muffle 

furnace at 550C for 12 h. Crude dietary fibre was determined by digesting the defatted sample with 

multiple washes of acetone and ethanol.  The resulting residue was corrected for undigested protein 

and ash. To determine neutral-detergent fibre (NDF) content samples were then boiled with buffered 

NDF solution.  The residue was collected on a coarse sintered glass crucible.  The acid-detergent fibre 

(ADF) was determined following a sample being reacted in 0.5M acid detergent solution and the 

residue is collected on a coarse sintered glass crucible. The lignin content was determined by reacting 

the ADF residue with cold 72% sulphuric acid.  The sample was then ashed and the residue measured 

gravimetrically. Gross energy content of each sample was determined by adiabatic bomb calorimetry. 

Differences in the ratios of the parameters of dry matter, protein, amino acids or gross energy relative 

to yttrium content, in the feed and faeces in each sample were calculated to determine the apparent 

digestibility coefficient (ADCdiet) for each of the nutritional parameters examined in each sample of 

each diet based on the following formula as reviewed in Glencross et al. (2007a):  
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where Ydiet and Yfaeces represent the yttrium content of the diet and faeces respectively, and 

Parameterdiet and Parameterfaeces represent the nutritional parameter of concern (dry matter, protein or 

energy) content of the diet and faeces respectively. The digestibility values for each of the test 

ingredients in the test diets examined in this study were calculated according to the formulae: 

 

 

 

Where Nutr.ADingredient is the digestibility of a given nutrient from the test ingredient included in 

the test diet at 30%. ADtest is the apparent digestibility of the test diet. ADbasal is the apparent 

digestibility of the basal diet, which makes up 70% of the test diet. NutrIngredient, Nutrtest and Nutrbasal are 

the level of the nutrient of interest in the ingredient, test diet and basal diet respectively (as reviewed 

by Glencross et al., 2007a). All raw material inclusion levels were corrected for dry matter 

contribution and the effects that this may have had on the actual ratio of reference diet to test 

ingredient. 

 Based on this assessment digestibilities determined greater than 100% were not corrected 

because they were considered potentially indicative of interactive effects between the diet and test 

ingredient and therefore should be stipulated as determined. However, for reasons of practicality, the 

total levels of digestible nutrients/energy were only calculated assuming a maximum digestibility of 

100% or a minimum of 0%. 

 

NIRS scanning and chemometrics 

A Diode Array Near Infrared Spectrometer (DA7200, Perten Instruments, Huddinge, Sweden) 

was used to scan each of the 135 lupin meals samples. These samples were scanned in reflectance 

mode using the rotating 75mm sample cup. The spectra from all of the samples were collected across 

the full wave length range (950 to 1650nm) of the instrument as absorbance at a resolution of 2nm 

using 9 scans per sample (DA7200 Operation Manual, 2007). The scans were collected in groups of 3 

with the sample cup repacked between each group. There were processed by the DA7200 to provide a 

single spectra for analysis. These spectra were then combined with the nutrient composition, energy 

value and digestibility data which was copied in to the UNSCRAMBLER ® multivariate analysis 

software package ready for calibration model development. The raw lupin meal spectra obtained is 

shown in Figure 1. 

Initially all the primary spectra were examined visually to eliminate anomalous scans before 

being copied into the UNSCRAMBLER® multivariate analysis software (Workman and Weyer, 
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2008). The reference data was then incorporated to form the calibration data set.  Cross validation was 

then used to evaluate the relationship between the spectra and the digestibility, nutrient and energy 

values.   The UNSCRAMBLER® was then used to develop a model that provided a regression based 

on the whole spectra after specific mathematical treatments of the data. The calibration was evaluated 

by the statistical measurements of the standard error of cross validation (SECV) and the correlation 

coefficient (R2) (Workman & Weyer, 2008). An optimisation program was used to determine the math 

pre-treatments and wave number ranges to use with the data that gave the lowest standard error of 

cross validation (Workman & Weyer, 2008). Cross validation tests were run on the suggested 

combinations after taking into consideration any Wave Number ranges known to be appropriate for 

the parameter under consideration. Validation tests were then re-run after excluding outliers (samples 

the software flags as either bad reference results or extremely unusual spectrally) (Esbensen, 2004).  

This process was continued until a balance was struck that included the following elements; a) the 

standard error of cross validation (SECV) is similar to the standard error of the reference method, b) 

the number of outliers (poor prediction samples) remaining is small enough or their residual vales are 

low enough to still be able to meet the objectives of the calibration, and c) the correlation coefficient 

(R2) is sufficiently close to a perfect correlation of 1.0 to indicate probable future robustness and to 

meet the objectives of the calibration (Esbensen, 2004). Provided the SECV value is in the order of 

the reference method standard error values of R2 of 0.6 or even lower can be acceptable but values of 

over 0.8 are desirable (Workman & Weyer, 2008). Also for calibration robustness the standard 

deviation of the total population used in the calibration model should be at least 1.5x (preferably 2 

times or more) the SECV value (Workman & Weyer, 2008).  

 

Statistical analysis 

 All values are means unless otherwise specified. Figures were constructed and Multivariate 

chemometric analysis was undertaken using the UNSCRAMBLER® software.  
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Results and Discussion 

 

Variability exists in all ingredients. This variability can be managed through a variety of 

means, either by the ingredient supplier, or by the feed manufacturer. Examples of this include the 

large-scale blending by commodity handlers of grains of different protein levels to produce a more 

homogenous product, or the analysis of batch variation by feed manufacturers to allow precise 

customisation of each diet according to each batch of ingredients supplied (Jiang, 2001; Glencross et 

al., 2008a). In addition to these ingredient management strategies an improved understanding of the 

level of variability in the chemical composition of the ingredient and how that variability contributes 

to changes in nutritional value is a key step to maximising the potential value of the ingredient 

(Glencross et al., 2008a; b). In this study a series of 136 lupin (L. angustifolius) meal samples were 

collected over a six-year period and examined in a series of digestibility assays with rainbow trout. 

This work builds on earlier datasets already published by these authors (Glencross et al., 2008a; b), by 

adding an additional 60 samples and also further analysing all 136 of the samples using NIRS 

technology. 

 

Data variance 

Over a series of ten independent experiments both the basal and reference diets had minimal 

variability in their digestibility parameters among experiments (Table 2). Dry matter diet 

digestibilities were different for both diets, but had a similar coefficient of variance of 1.9% and 2.3%. 

Coefficients of variance (CV) for diet protein digestibility were low at 1.2% and 1.3%, and the means 

identical at 0.905. Diet energy digestibilities were different for both diets (0.899 and 0.812), but also 

had low CV’s of 1.4 and 1.9%. These data are consistent with other similar such data published on 

lupin meal digestibility in rainbow trout (Glencross et al., 2005; 2007b; 2008b; 2011b). 

The variability of the ingredient apparent digestibility coefficients for the reference were 

typically greater than that observed of the diet digestibilities (Table 2). This is to be expected because 

of the inherent nature in which the ingredient digestibility values are calculated depending on the diet 

digestibility values of two separate diets and the ingredient composition values. As such this 

parameter incorporates the errors of all three of these assessments (as reviewed by Glencross et al., 

2007a). However, the resultant data still proved to be very robust and from it energy digestibility was 

the most consistent of the ingredient parameters evaluated, with a CV of 4.0%. Digestibilities for the 

dry matter had the highest variability with a CV of 9.8%. 

There was substantial variability in the composition of the lupin kernel meals used in this 

study. As a summary of Table 3; the mean ± S.D., protein (N x 6.25) concentration in lupin meals, 

across all 136 samples was 445 ± 66 g kg-1 on a dry basis (range 27.7 to 61.3 g kg-1). Total lipid was 

79 ± 14 g kg-1 (range 50 to 171 g kg-1) and ash 32 ± 7 g kg-1. Carbohydrates, measured by difference 
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between dry matter minus protein, lipid and ash, were 426 ± 50 g kg-1 on a dry basis (range 254 to 539 

g kg-1). Mean gross energy was 20.6 ± 0.6 MJ kg-1 DM (range 18.7 to 23.0 MJ kg-1 DM). Dietary 

crude fibre was 309 ± 4.6 g kg-1 on a dry basis (range 175 to 434 g kg-1), acid-detergent fibre was 101 

± 52 g kg-1 on a dry basis (range 52 to 262 g kg-1), neutral-detergent fibre was 64 ± 44 g kg-1 on a dry 

basis (range 30 to 200 g kg-1) and lignin was 6.2 ± 3.5 g kg-1 on a dry basis (range 2.2 to 21.7 g kg-1) 

(Table 3). These composition values are similar, but a little more variable than that of most lupin 

studies published (De la Higuera et al., 1988; Burel et al., 1998; Glencross et al., 2005; 2007b; 2008b; 

2011b). 

Substantial variability in ingredient digestible protein/energy parameters was measured across 

all experimental ingredients (Table 3). This variability was compounded by the combined variability 

in ingredient composition and ingredient digestibility. The ingredient digestible protein had a 

coefficient of variation of 15.3%, with a range in digestible protein levels of 244 to 595 g kg-1 on a dry 

basis (Table 3). The ingredient digestible energy levels had a coefficient of variation of 14.9%, with a 

range in ingredient digestible energy of 7.7 to 20.5 MJ kg-1 on a dry basis (Table 3). These digestible 

nutrient values are similar, but a little more variable than that of most other lupin studies published 

(Burel et al., 1998; Glencross et al., 2005; 2007b; 2008b; 2011b). 

 

NIRS calibration statistics 

Calibrations were successfully developed for each of the parameters in this study (Table 3). 

Although the focus of this was on calibration development for the digestible protein and digestible 

energy values (Figures 3 and 4; Table 3), calibrations were also successfully developed for a suite of 

compositional features (Table 3). Among the composition calibrations the number of factors used to 

derived the calibration varied from 3 (sum of amino acids) to 9 (energy). The calibration R^2 values 

ranged from 0.739 for sum of amino acids to 0.991 for neutral detergent fibre. The cross validation 

R^2 values were closely aligned with the calibration R^2 values, albeit typically a little weaker. The 

standard error of cross validation ranged from 0.20 for ash to 2.00 for protein. 

Among the digestible protein and digestible energy calibrations the number of factors used to 

derived the calibration varied from 5 (digestible energy) to 8 (digestible protein). The calibration R^2 

values ranged from 0.803 for digestible protein to 0.807 for digestible energy. As with the 

compositional parameters, the cross validation R^2 values were again closely aligned with the 

calibration R^2 values, albeit typically a little weaker. The standard error of cross validation ranged 

from 2.73 for digestible energy to 3.32 for digestible protein. 

These digestible protein and digestible energy calibrations appear to be quite unique within 

the scientific literature. Not only are they the only such calibrations found for a feed grain for these 

digestible value parameters in fish, they also appear to be relatively unique within broader 

monogastric research in that they base the development of the calibrations for a single type of feed 
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grain. This is in contrast to similar such work done with pigs which used a range of cereal varieties 

(barely, wheat, sorghum, triticale and maize) (van Barneveld et al., 1999). These earlier pig studies 

also had problems with sample analysis by different laboratories and the lack of inter-experimental 

reference ingredients, issues that have both been addressed in the present study. 

It has been suggested that an acceptable calibration should have an accuracy >1.5 times the 

value reported as the standard error of the reference method used for that parameter, a value referred 

to as the RPD (Workman & Weyer, 2008). Based on this assessment the digestible energy calibration 

had a RPD of 1.50 and the digestible protein a RPD of 1.18. Therefore this would suggest that the 

digestible energy calibration is acceptable, but that the digestible protein calibration still needs further 

refinement, despite having a R^2 > 0.80. This refinement could potentially be achieved by either 

fortifying the dataset further with additional samples and digestibility data, or by removing those data 

points from the calibration that weaken the calibration R^2. 

 

Conclusions 

The cross validation tests used in this study provide a valid indication of the potential to 

predict the nutrient composition, energy value and digestible protein or digestible energy values of the 

lupin kernel meals as used in the rainbow trout feeding trials. Overall the standard errors of cross 

validation (SECV) of the parameters investigated were generally commensurate with the cross trial 

variation seen in the reference sample (cv Myallie) and the RPD values at or close to values indicating 

robust calibrations for the two target parameters of digestible protein and digestible energy.     

This study therefore demonstrates that there is great potential to use NIRS to predict both the 

composition and digestible values of kernel meal samples of narrow-leaf lupins either by scanning the 

kernel meal before diet preparation.    
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Tables and Figures 

 

Figure 1. Raw spectral data of L. angustifolius kernel meals (n=135) in the NIRS range. 
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 Figure 2. 1st-order derivative of spectral data of L. angustifolius kernel meals in the NIRS range. 
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Figure 3. Measured versus NIRS predicted crude protein of L. angustifolius kernel meals (blue 

data). Shown in red is the cross-validation dataset. 
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Figure 4. Measured versus NIRS predicted digestible protein value of L. angustifolius kernel 

meals (blue data). Shown in red is the cross-validation dataset. 
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Figure 5. Measured versus NIRS predicted digestible energy value of L. angustifolius kernel 

meals (blue data). Shown in red is the cross-validation dataset. 
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Table 1. Formulation of key diets in each experiment 

 
Basal Test Reference 

    Fishmeal  700.0 490.0 490.0 

Fish oil 150.0 105.0 105.0 

Test meal* - 300.0 - 

Reference meal# - - 300.0 

Wheat flour 144.0 100.8 100.8 

Vitamin and mineral premix 5.0 3.5 3.5 

Yttrium oxide 1.0 0.7 0.7 

    Total 1000.0 1000.0 1000.0 
*one of 135 test lupin meals 

#L.angustifolius cv. Myallie kernel meal. Coorow Seed Cleaners, Coorow, WA, Australia 
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Table 2. Digestibility data variation 

 

 
Dry matter Protein Energy 

    Diet digestibility – Basal reference diet 

  Mean 0.822 0.905 0.899 

SD 0.019 0.012 0.013 

SEM 0.007 0.004 0.005 

CV% 2.3% 1.3% 1.4% 

    Diet digestibility - L. angustifolius cv Myallie reference  

Mean 0.723 0.905 0.812 

SD 0.014 0.011 0.016 

SEM 0.004 0.003 0.005 

CV% 1.9% 1.2% 1.9% 

    Ingredient digestibility - L. angustifolius cv Myallie reference  

Mean 0.499 0.971 0.564 

SD 0.049 0.039 0.041 

SEM 0.014 0.011 0.012 

CV% 9.8% 4.0% 7.3% 

    Ingredient digestibility - L. angustifolius : All test samples 

 Mean 0.546 0.933 0.614 

SD 0.136 0.073 0.113 

SEM 0.011 0.006 0.009 

CV% 25.1% 7.8% 18.4% 

        
CV%: Coefficient of variation = SD / Mean x100 

 



21 

 

Table 3. Nutrient composition, digestible value data and NIRS calibration statistics 

 

  Sample characteristics          Calibration statistics 

Parameters n Mean SD CV% Min Max  Factors Cal R^2 Val R^2 SECV 

       

 

    Composition 

      

 

    Dry Matter 136 919 13 1.5% 892 950  - - - - 

Protein (N * 6.25) 136 445 66 14.9% 277 613  8 0.933 0.908 2.00 

Total Lipid 109 79 14 17.6% 50 171  5 0.868 0.782 0.48 

Ash 110 32 7 21.8% 19 66  5 0.884 0.784 0.20 

Carbohydrates 109 426 50 11.8% 254 539  4 0.868 0.772 1.70 

Energy 136 206 6 3.0% 187 230  9 0.885 0.844 1.70 

Sum of Amino Acids 93 443 37 8.3% 332 570  3 0.739 0.686 1.74 

Crude Fibre 35 309 46 14.9% 175 434  4 0.980 0.942 0.96 

Acid Detergent Fibre 38 101 52 51.1% 52 262  5 0.983 0.968 0.88 

Neutral Detergent Fibre 38 64 44 68.5% 30 200  5 0.991 0.984 0.74 

Lignin 38 6.3 3.5 56.1% 2 22  5 0.932 0.920 0.42 

       

 

    Digestible Value 

      

 

    Digestible Protein 136 414 63 15.3% 244 595  8 0.803 0.735 3.32 

Digestible Energy 136 122 18 14.9% 77 205  5 0.807 0.778 2.73 

                       

 


