545 research outputs found

    P/6 The water oxidizing enzyme

    Get PDF

    Calcium binding to the photosystem II subunit CP29.

    Get PDF
    We have identified a Ca(2+)-binding site of the 29-kDa chlorophyll a/b-binding protein CP29, a light harvesting protein of photosystem II most likely involved in photoregulation. (45)Ca(2+) binding studies and dot blot analyses of CP29 demonstrate that CP29 is a Ca(2+)-binding protein. The primary sequence of CP29 does not exhibit an obvious Ca(2+)-binding site therefore we have used Yb(3+) replacement to analyze this site. Near-infrared Yb(3+) vibronic side band fluorescence spectroscopy (Roselli, C., Boussac, A., and Mattioli, T. A. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 12897-12901) of Yb(3+)-reconstituted CP29 indicated a single population of Yb(3+)-binding sites rich in carboxylic acids, characteristic of Ca(2+)-binding sites. A structural model of CP29 presents two purported extra-membranar loops which are relatively rich in carboxylic acids, one on the stromae side and one on the lumenal side. The loop on the lumenal side is adjacent to glutamic acid 166 in helix C of CP29, which is known to be the binding site for dicyclohexylcarbodiimide (Pesaresi, P., Sandonà, D., Giuffra, E. , and Bassi, R. (1997) FEBS Lett. 402, 151-156). Dicyclohexylcarbodiimide binding prevented Ca(2+) binding, therefore we propose that the Ca(2+) in CP29 is bound in the domain including the lumenal loop between helices B and C

    Energetics of proton release on the first oxidation step in the water-oxidizing enzyme

    Get PDF
    In photosystem II (PSII), the Mn4CaO5 cluster catalyses the water splitting reaction. The crystal structure of PSII shows the presence of a hydrogen-bonded water molecule directly linked to O4. Here we show the detailed properties of the H-bonds associated with the Mn4CaO5 cluster using a quantum mechanical/molecular mechanical approach. When O4 is taken as a μ-hydroxo bridge acting as a hydrogen-bond donor to water539 (W539), the S0 redox state best describes the unusually short O4–OW539 distance (2.5 Å) seen in the crystal structure. We find that in S1, O4 easily releases the proton into a chain of eight strongly hydrogen-bonded water molecules. The corresponding hydrogen-bond network is absent for O5 in S1. The present study suggests that the O4-water chain could facilitate the initial deprotonation event in PSII. This unexpected insight is likely to be of real relevance to mechanistic models for water oxidation.UTokyo Research掲載「光合成の水分解反応初期に水素イオンが放出される仕組みを解明」 URI: http://www.u-tokyo.ac.jp/ja/utokyo-research/research-news/pathway-for-initial-proton-released-from-water-oxidizing-enzyme.htmlUTokyo Research "Pathway for initial proton released from water-oxidizing enzyme" URI: http://www.u-tokyo.ac.jp/en/utokyo-research/research-news/pathway-for-initial-proton-released-from-water-oxidizing-enzyme.htm

    Impact of energy limitations on function and resilience in long-wavelength Photosystem II

    Get PDF
    Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis, a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PD1+Phe- repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and QA and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties

    Photoelectrochemistry of Photosystem II in Vitro vs in Vivo.

    Get PDF
    Factors governing the photoelectrochemical output of photosynthetic microorganisms are poorly understood, and energy loss may occur due to inefficient electron transfer (ET) processes. Here, we systematically compare the photoelectrochemistry of photosystem II (PSII) protein-films to cyanobacteria biofilms to derive: (i) the losses in light-to-charge conversion efficiencies, (ii) gains in photocatalytic longevity, and (iii) insights into the ET mechanism at the biofilm interface. This study was enabled by the use of hierarchically structured electrodes, which could be tailored for high/stable loadings of PSII core complexes and Synechocystis sp. PCC 6803 cells. The mediated photocurrent densities generated by the biofilm were 2 orders of magnitude lower than those of the protein-film. This was partly attributed to a lower photocatalyst loading as the rate of mediated electron extraction from PSII in vitro is only double that of PSII in vivo. On the other hand, the biofilm exhibited much greater longevity (>5 days) than the protein-film (<6 h), with turnover numbers surpassing those of the protein-film after 2 days. The mechanism of biofilm electrogenesis is suggested to involve an intracellular redox mediator, which is released during light irradiation

    Comparative recoveries of airborne fungus spores by viable and non-viable modes of volumetric collection

    Full text link
    The suitability of viable and non-viable volumetric collectors as prevalence indicators for potentially allergenic airborne fungi was studied during 124 paired exposures of the Burkard (Hirst) spore trap and a modified, wind-oriented Andersen sampler. Overall, viable recoveries of several Cladosporium form species varied directly with microscopic spore counts (p≤0.0001). However, as spore levels rose, culture plate data progressively underestimated prevailing concentrations (recoveries falling below 5% at levels above 500 spores/M 3 ). Viable collections yielded low estimates of prevalence (20–40%) even at modest Cladosporium levels (< 100 spores/M 3 ) and substantially understated the abundance and regularity in air of several additional taxa. Spores typical of Penicillium and Aspergillus form species were not sought in spore trap deposits. Careful examination of these failed to reveal typical arthrospores or Fusarium macrospores despite substantial recoveries of corresponding growth in culture. Correlations in the occurrence patterns of arthrospore-forming and non-sporulating colonies with those of Coprinus and ‘other basidiospores’ (excluding Ganoderma) were noted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43291/1/11046_2004_Article_BF00440755.pd

    Origin and evolution of water oxidation before the last common ancestor of the Cyanobacteria

    Get PDF
    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages towards the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria

    The primary donor of far-red photosystem II: ChlD1 or PD2?

    Get PDF
    Far-red light (FRL) Photosystem II (PSII) isolated from Chroococcidiopsis thermalis is studied using parallel analyses of low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies in conjunction with fluorescence measurements. This extends earlier studies (Nurnberg et al 2018 Science 360 (2018) 1210-1213). We confirm that the chlorophyll absorbing at 726 nm is the primary electron donor. At 1.8 K efficient photochemistry occurs when exciting at 726 nm and shorter wavelengths; but not at wavelengths longer than 726 nm. The 726 nm absorption peak exhibits a 21 ± 4 cm-1 electrochromic shift due to formation of the semiquinone anion, QA-. Modelling indicates that no other FRL pigment is located among the 6 central reaction center chlorins: PD1, PD2 ChlD1, ChlD2, PheoD1 and PheoD2. Two of these chlorins, ChlD1 and PD2, are located at a distance and orientation relative to QA- so as to account for the observed electrochromic shift. Previously, ChlD1 was taken as the most likely candidate for the primary donor based on spectroscopy, sequence analysis and mechanistic arguments. Here, a more detailed comparison of the spectroscopic data with exciton modelling of the electrochromic pattern indicates that PD2 is at least as likely as ChlD1 to be responsible for the 726 nm absorption. The correspondence in sign and magnitude of the CD observed at 726 nm with that predicted from modelling favors PD2 as the primary donor. The pros and cons of PD2 vs ChlD1 as the location of the FRL-primary donor are discussed.We recognize the support of the Australian Research Councilthrough grants DP110104565 and DP150103137 (EK), FT140100834(NC). This work was supported by BBSRC grants BB/L011506/1 andBB/R001383/1 (AWR, AF and DN
    corecore