23 research outputs found

    Variabilité climatique de l'Atlantique Nord aux échelles de temps décennale à multidécennale : mécanismes et prévisibilité

    Get PDF
    Aux échelles de temps décennale à multidécennale, l'Atlantique Nord se caractérise par une modulation de sa température de surface à grande échelle modifiant les conditions climatiques des continents alentours, en particulier le Sahel, l'Amérique du Nord et l'Europe. En raison d'une faible couverture temporelle aux regards des échelles de temps considérées et d'un faible échantillonnage de la structure tridimensionnelle de l'océan, les observations ne permettent pas d'analyser en détail les origines de cette variabilité connue sous le nom d'Oscillation ou Variabilité Atlantique Multidécennale (AMV). Dans cette thèse, nous avons utilisé le modèle de climat CNRM-CM5 comme laboratoire numérique pour étudier d'une part les mécanismes physiques internes (par opposition à ceux forcés par les facteurs externes comme l'activité solaire, les gaz à effet de serre etc.) qui engendrent cette variabilité et d'autre part la prévisibilité associée à cette variabilité. L'analyse d'une simulation de 1000 ans dite de contrôle (tous les forçages externes au système climatique sont maintenus constants) met en évidence que l'AMV simulée par ce modèle est principalement contrôlée par les fluctuations multidécennales de la circulation océanique méridienne de retournement (AMOC) et du transport de chaleur méridien associé. La variabilité de l'AMOC répond à l'excitation de modes de variabilité atmosphérique de type Est Atlantique (EAP) et Oscillation Nord Atlantique (NAO) en hiver. Ceux-ci déclenchent une réaction en chaîne de processus océaniques conduisant in fine ~30 ans plus tard à un événement d'AMOC/AMV. La nature même de ces processus contrôle l'échelle de temps de la variabilité. Plus précisément, nous avons mis en évidence le rôle crucial joué par les anomalies de densité océanique des 500 premiers mètres du gyre subpolaire sur les fluctuations de l'AMOC. Dans une deuxième partie, nous nous sommes intéressés à l'estimation de la prévisibilité associée à l'AMV dans CNRM-CM5. Nous avons pour cela suivi une approche type " modèle parfait " en cherchant à " reprévoir ", par une méthode ensembliste, les variations de la simulation de contrôle. Nous avons montré à partir d'une série de métriques et de modèles statistiques, que, dans CNRM-CM5, l'AMOC et l'AMV sont prévisibles jusqu'à une échéance allant de 15 à plus de 30 ans en fonction des conditions initiales océaniques. Cette prévisibilité conditionnelle provient des anomalies de la densité du gyre subpolaire - plus précisément de sa composante salinité - et de leur évolution selon le mécanisme proposé. Finalement, nous trouvons que la prévisibilité océanique est associée à une prévisibilité sur les continents en termes de température de surface et circulation atmosphérique.At decadal to multidecadal timescale, the North Atlantic Ocean is characterized by a large-scale modulation of its surface temperature and heat/salt content. The latter, known as Atlantic Multidecadal Oscillation or Variability (AMV), is associated with anomalous climate conditions over the adjacent continents, especially over the Sahel, the north American continent and Europe. It is impossible from the sole observations to assess the origin of such a variability because of their short temporal coverage with respect to the involved timescale and because of their critical undersampling of the three dimensional states of the ocean. In this thesis, we have used the CNRM-CM5 climate model as a numerical lab to first investigate the internal mechanisms (as opposed to forced by external factors such as solar, greenhouse gazes etc.) at the origin of the AMV and second to quantify the associated predictability. The analysis of a 1000-yr control simulation (external climate forcing maintained to a constant level) shows that the model AMV is mainly controlled by the multidecadal evolution of the Atlantic meridional overturning circulation (AMOC) and associated heat/salt transport. The AMOC low-frequency variability is forced by the excitation of wintertime atmospheric modes over the Atlantic, namely the East Atlantic Pattern and the North Atlantic Oscillation. Those kick a chain reaction of oceanic processes leading in fine about 30 years later to an AMOC/AMV event. Such a timescale is controlled by the ocean dynamics and thermodynamics intrinsic properties. More specifically, we insist on the critical role played by the density anomalies of the first 500-meter of the subpolar gyre in controlling a large part of the AMOC fluctuations. We then focus on the estimation of the predictability level of the AMV in CNRM-CM5. To do so, we adopt the so-called perfect model approach that consists in reforecasting the model itself via an ensemblist method. Based on the use of a series of metrics and simple statistical models, we show that the AMOC/AMV in CNRM-CM5 is predictable for leadtimes ranging from 15 to 30 years as a function of the oceanic initial conditions. Such a conditional predictability is linked to the evolution of the density anomalies of the subpolar gyre and more specifically its salinity component, in line with the above-documented proposed mechanism. The oceanic predictability is associated to some predictability over the continents in terms of surface temperature and atmospheric circulation

    Role of the Atlantic Multidecadal Variability in modulating the climate response to a Pinatubo-like volcanic eruption

    Get PDF
    The modulation by the Atlantic multidecadal variability (AMV) of the dynamical climate response to a Pinatubo-like eruption is investigated for the boreal winter season based on a suite of large ensemble experiments using the CNRM-CM5 Coupled Global Circulation Model. The volcanic eruption induces a strong reduction and retraction of the Hadley cell during 2 years following the eruption and independently of the phase of the AMV. The mean extratropical westerly circulation simultaneously weakens throughout the entire atmospheric column, except at polar Northern latitudes where the zonal circulation is slightly strengthened. Yet, there are no significant changes in the modes of variability of the surface atmospheric circulation, such as the North Atlantic Oscillation (NAO), in the first and the second winters after the eruption. Significant modifications over the North Atlantic sector are only found during the third winter. Using clustering techniques, we decompose the atmospheric circulation into weather regimes and provide evidence for inhibition of the occurrence of negative NAO-type circulation in response to volcanic forcing. This forced signal is amplified in cold AMV conditions and is related to sea ice/atmosphere feedbacks in the Arctic and to tropical-extratropical teleconnections. Finally, we demonstrate that large ensembles of simulations are required to make volcanic fingerprints emerge from climate noise at mid-latitudes. Using small size ensemble could easily lead to misleading conclusions especially those related to the extratropical dynamics, and specifically the NAO.This research was carried out within the pro- jects: (i) MORDICUS funded by the French Agence Nationale de la Recherche (ANR-13-SENV-0002-02); (ii) SPECS funded by the European Commission’s Seventh Framework Research Programme under the grant agreement 308378; (iii) VOLCADEC funded by the Spanish program MINECO/FEDER (ref. CGL2015-70177-R). We thank Javier Garcia-Serrano for its comments about the NAO precursors, Omar Bellprat for its suggestions concerning the statistical analysis and François Massonnet for its recommendations in terms of graphical presentation. CC is grateful to Marie-Pierre Moine, Laure Coquart and Isabelle Dast for technical help to run the model. Computer resources have been provided by Cerfacs. We thank the two anonymous referees for their useful comments and suggestions to improve this manuscript.Peer ReviewedPostprint (author's final draft

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.The development of EC-Earth3 was supported by the European Union's Horizon 2020 research and innovation program under project IS-ENES3, the third phase of the distributed e-infrastructure of the European Network for Earth System Modelling (ENES) (grant agreement no. 824084, PRIMAVERA grant no. 641727, and CRESCENDO grant no. 641816). Etienne Tourigny and Raffaele Bernardello have received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement nos. 748750 (SPFireSD project) and 708063 (NeTNPPAO project). Ivana Cvijanovic was supported by Generalitat de Catalunya (Secretaria d'Universitats i Recerca del Departament d’Empresa i Coneixement) through the Beatriu de Pinós program. Yohan Ruprich-Robert was funded by the European Union's Horizon 2020 research and innovation program in the framework of Marie Skłodowska-Curie grant INADEC (grant agreement 800154). Paul A. Miller, Lars Nieradzik, David Wårlind, Roland Schrödner, and Benjamin Smith acknowledge financial support from the strategic research area “Modeling the Regional and Global Earth System” (MERGE) and the Lund University Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI). Paul A. Miller, David Wårlind, and Benjamin Smith acknowledge financial support from the Swedish national strategic e-science research program eSSENCE. Paul A. Miller further acknowledges financial support from the Swedish Research Council (Vetenskapsrådet) under project no. 621-2013-5487. Shuting Yang acknowledges financial support from a Synergy Grant from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC (grant agreement 610055) as part of the ice2ice project and the NordForsk-funded Nordic Centre of Excellence project (award 76654) ARCPATH. Marianne Sloth Madsen acknowledges financial support from the Danish National Center for Climate Research (NCKF). Andrea Alessandri and Peter Anthoni acknowledge funding from the Helmholtz Association in its ATMO program. Thomas Arsouze, Arthur Ramos, and Valentina Sicardi received funding from the Ministerio de Ciencia, Innovación y Universidades as part of the DeCUSO project (CGL2017-84493-R).​​​​​​​Peer Reviewed"Article signat per 61 autors/es: Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho11, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang"Postprint (author's final draft

    Tropical cyclone integrated kinetic energy in an ensemble of HighResMIP simulations

    Get PDF
    This study investigates tropical cyclone integrated kinetic energy, a measure which takes into account the intensity and the size of the storms and which is closely associated with their damage potential, in three different global climate models integrated following the HighResMIP protocol. In particular, the impact of horizontal resolution and of the ocean coupling are assessed. We find that, while the increase in resolution results in smaller and more intense storms, the integrated kinetic energy of individual cyclones remains relatively similar between the two configurations. On the other hand, atmosphere-ocean coupling tends to reduce the size and the intensity of the storms, resulting in lower integrated kinetic energy in that configuration. Comparing cyclone integrated kinetic energy between a present and a future scenario did not reveal significant differences between the two periods

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    Modulation of the Occurrence of Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability

    Get PDF
    International audienceThe influence of the Atlantic multidecadal variability (AMV) and its amplitude on the Euro-Mediterranean summer climate is studied in two climate models, namely CNRM-CM5 and EC-Earth3P. Large ensembles of idealized experiments have been conducted in which North Atlantic sea surface temperatures are relaxed toward different amplitudes of the observed AMV anomalies. In agreement with observations, during a positive phase of the AMV both models simulate an increase (decrease) in temperature of 0.2°–0.8°C and a decrease (increase) in precipitation over the Mediterranean basin of 0.1–0.2 mm day −1 (northern half of Europe) compared to a negative phase. Heatwave durations over the Mediterranean land regions are 40% (up to 85% over the eastern regions) longer for a moderate amplitude of the AMV. Lower and higher amplitudes lead to longer durations of ~30% and ~100%, respectively. A comparison with observed heatwaves indicates that the AMV can considerably modulate the current anthropogenically forced response on heatwaves durations depending on the area and on the AMV amplitude. The related anticyclonic anomalies over the Mediterranean basin are associated with drier soils and a reduction of cloud cover, which concomitantly induce a decrease (increase) of the latent (sensible) heat flux, and an enhancement of the downward radiative fluxes over lands. It is found that both tropical and extratropical forcings from the AMV are needed to trigger mechanisms, which modulate the atmospheric circulation over the Euro-Atlantic region. The amplitude of the local climate response over the Mediterranean basin evolves linearly with the amplitude of the AMV. However, the strength of this relationship differs between the models, and depends on their intrinsic biases
    corecore