21 research outputs found

    Integrated Proteotranscriptomics of Breast Cancer Reveals Globally Increased Protein-mRNA Concordance Associated with Subtypes and Survival

    Get PDF
    BACKGROUND: Transcriptome analysis of breast cancer discovered distinct disease subtypes of clinical significance. However, it remains a challenge to define disease biology solely based on gene expression because tumor biology is often the result of protein function. Here, we measured global proteome and transcriptome expression in human breast tumors and adjacent non-cancerous tissue and performed an integrated proteotranscriptomic analysis. METHODS: We applied a quantitative liquid chromatography/mass spectrometry-based proteome analysis using an untargeted approach and analyzed protein extracts from 65 breast tumors and 53 adjacent non-cancerous tissues. Additional gene expression data from Affymetrix Gene Chip Human Gene ST Arrays were available for 59 tumors and 38 non-cancerous tissues in our study. We then applied an integrated analysis of the proteomic and transcriptomic data to examine relationships between them, disease characteristics, and patient survival. Findings were validated in a second dataset using proteome and transcriptome data from The Cancer Genome Atlas and the Clinical Proteomic Tumor Analysis Consortium. RESULTS: We found that the proteome describes differences between cancerous and non-cancerous tissues that are not revealed by the transcriptome. The proteome, but not the transcriptome, revealed an activation of infection-related signal pathways in basal-like and triple-negative tumors. We also observed that proteins rather than mRNAs are increased in tumors and show that this observation could be related to shortening of the 3\u27 untranslated region of mRNAs in tumors. The integrated analysis of the two technologies further revealed a global increase in protein-mRNA concordance in tumors. Highly correlated protein-gene pairs were enriched in protein processing and disease metabolic pathways. The increased concordance between transcript and protein levels was additionally associated with aggressive disease, including basal-like/triple-negative tumors, and decreased patient survival. We also uncovered a strong positive association between protein-mRNA concordance and proliferation of tumors. Finally, we observed that protein expression profiles co-segregate with a Myc activation signature and separate breast tumors into two subgroups with different survival outcomes. CONCLUSIONS: Our study provides new insights into the relationship between protein and mRNA expression in breast cancer and shows that an integrated analysis of the proteome and transcriptome has the potential of uncovering novel disease characteristics

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities

    Get PDF
    In recent years, a lot of effort has been made to achieve controlled delivery of target particles to the hotspots of plasmonic nanoantennas, in order to probe and/or exploit the extremely large field enhancements produced by such structures. While in many cases such high fields are advantageous, there are instances where they should be avoided. In this work, we consider the implications of using the standard nanoantenna geometries when colloidal quantum dots are employed as target entities. We show that in this case, and for various reasons, dimer antennas are not the optimum choice. Plasmonic ring cavities are a better option despite low field enhancements, as they allow collective coupling of many quantum dots in a reproducible and predictable manner. In cases where larger field enhancements are required, or for larger quantum dots, nonconcentric ring-disk cavities can be employed instead

    Integrated proteotranscriptomics of breast cancer reveals globally increased protein-mRNA concordance associated with subtypes and survival

    Get PDF
    Abstract Background Transcriptome analysis of breast cancer discovered distinct disease subtypes of clinical significance. However, it remains a challenge to define disease biology solely based on gene expression because tumor biology is often the result of protein function. Here, we measured global proteome and transcriptome expression in human breast tumors and adjacent non-cancerous tissue and performed an integrated proteotranscriptomic analysis. Methods We applied a quantitative liquid chromatography/mass spectrometry-based proteome analysis using an untargeted approach and analyzed protein extracts from 65 breast tumors and 53 adjacent non-cancerous tissues. Additional gene expression data from Affymetrix Gene Chip Human Gene ST Arrays were available for 59 tumors and 38 non-cancerous tissues in our study. We then applied an integrated analysis of the proteomic and transcriptomic data to examine relationships between them, disease characteristics, and patient survival. Findings were validated in a second dataset using proteome and transcriptome data from “The Cancer Genome Atlas” and the Clinical Proteomic Tumor Analysis Consortium. Results We found that the proteome describes differences between cancerous and non-cancerous tissues that are not revealed by the transcriptome. The proteome, but not the transcriptome, revealed an activation of infection-related signal pathways in basal-like and triple-negative tumors. We also observed that proteins rather than mRNAs are increased in tumors and show that this observation could be related to shortening of the 3′ untranslated region of mRNAs in tumors. The integrated analysis of the two technologies further revealed a global increase in protein-mRNA concordance in tumors. Highly correlated protein-gene pairs were enriched in protein processing and disease metabolic pathways. The increased concordance between transcript and protein levels was additionally associated with aggressive disease, including basal-like/triple-negative tumors, and decreased patient survival. We also uncovered a strong positive association between protein-mRNA concordance and proliferation of tumors. Finally, we observed that protein expression profiles co-segregate with a Myc activation signature and separate breast tumors into two subgroups with different survival outcomes. Conclusions Our study provides new insights into the relationship between protein and mRNA expression in breast cancer and shows that an integrated analysis of the proteome and transcriptome has the potential of uncovering novel disease characteristics

    Pyrvinium Pamoate Induces Death of Triple-Negative Breast Cancer Stem-Like Cells and Reduces Metastases through Effects on Lipid Anabolism

    No full text
    Cancer stem-like cells (CSC) induce aggressive tumor phenotypes such as metastasis formation, which is associated with poor prognosis in triple-negative breast cancer (TNBC). Repurposing of FDA-approved drugs that can eradicate the CSC subcompartment in primary tumors may prevent metastatic disease, thus representing an effective strategy to improve the prognosis of TNBC. Here, we investigated spheroid-forming cells in a metastatic TNBC model. This strategy enabled us to specifically study a population of long-lived tumor cells enriched in CSCs, which show stem-like characteristics and induce metastases. To repurpose FDA-approved drugs potentially toxic for CSCs, we focused on pyrvinium pamoate (PP), an anthelmintic drug with documented anticancer activity in preclinical models. PP induced cytotoxic effects in CSCs and prevented metastasis formation. Mechanistically, the cell killing effects of PP were a result of inhibition of lipid anabolism and, more specifically, the impairment of anabolic flux from glucose to cholesterol and fatty acids. CSCs were strongly dependent upon activation of lipid biosynthetic pathways; activation of these pathways exhibited an unfavorable prognostic value in a cohort of breast cancer patients, where it predicted high probability of metastatic dissemination and tumor relapse. Overall, this work describes a new approach to target aggressive CSCs that may substantially improve clinical outcomes for patients with TNBC, who currently lack effective targeted therapeutic options. SIGNIFICANCE: These findings provide preclinical evidence that a drug repurposing approach to prevent metastatic disease in TNBC exploits lipid anabolism as a metabolic vulnerability against CSCs in primary tumors.status: publishe

    Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly

    No full text
    Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing
    corecore