62 research outputs found

    Stable Isotope Records from Mount Logan, Eclipse Ice Cores and Nearby Jellybean Lake. Water Cycle of the North Pacific Over 2000 Years and Over Five Vertical Kilometres: Sudden Shifts and Tropical Connections

    Get PDF
    Three ice cores recovered on or near Mount Logan, together with a nearby lake record (Jellybean Lake), cover variously 500 to 30 000 years. This suite of records offers a unique view of the lapse rate in stable isotopes from the lower to upper troposphere. The region is climatologically important, being beside the Cordilleran pinning-point of the Rossby Wave system and the Aleutian Low. Comparison of stable isotope series over the last 2000 years and model simulations suggest sudden and persistent shifts between modern (mixed) and zonal flow regimes of water vapour transport to the Pacific Northwest. The last such shift was in A.D. 1840. Model simulations for modern and “pure” zonal flow suggest that these shifts are consistent regime changes between these flow types, with predominantly zonal flow prior to ca. A.D. 1840 and modern thereafter. The 5.4 and 0.8 km asl records show a shift at A.D. 1840 and another at A.D. 800. It is speculated that the A.D. 1840 regime shift coincided with the end of the Little Ice Age and the A.D. 800 shift with the beginning of the European Medieval Warm Period. The shifts are very abrupt, taking only a few years at most.Trois carottes de glace prélevées à proximité du mont Logan, combinées à une coupe stratigraphique du lac Jellybean, couvrent une période comprise entre 500 et 30 000 ans. Elles renseignent sur les taux de changement de la composition isotopique de la troposphère. La région étudiée est importante au niveau climatologique puisqu’elle est au point de convergence des ondes de Rossby et de la dépression des Aléoutiennes. La comparaison entre la composition isotopique depuis 2000 ans et les résultats des simulations suggère des changements brusques et persistants entre les régimes de transport de vapeur d’eau modernes et zonaux dans le nord-est du Pacifique, où le dernier changement s’est produit en 1840 de notre ère. Les simulations indiquent que les changements de flux correspondent aux changements de régime, avec un flux zonal avant ca 1840 pour passer au type moderne ensuite. Les forages à 5,4 et 0,8 km d’altitude montrent un changement en A.D. 1840 et un autre en l’an 800. On présume que ces changements de régime coïncident respectivement avec la fin du Petit Âge Glaciaire et le début de la période médiévale chaude, ces changements s’étant produits en quelques années seulement

    Importance and vulnerability of the world’s water towers

    Get PDF
    Mountains are the water towers of the world, supplying a substantial part of both natural and anthropogenic water demands1,2. They are highly sensitive and prone to climate change3,4, yet their importance and vulnerability have not been quantified at the global scale. Here, we present a global Water Tower Index, which ranks all water towers in terms of their water-supplying role and the downstream dependence of ecosystems and society. For each tower, we assess its vulnerability related to water stress, governance, hydropolitical tension and future climatic and socio-economic changes. We conclude that the most important water towers are also among the most vulnerable, and that climatic and socio-economic changes will affect them profoundly. This could negatively impact 1.9 billion people living in (0.3 billion) or directly downstream of (1.6 billion) mountain areas. Immediate action is required to safeguard the future of the world’s most important and vulnerable water towers

    A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya

    Get PDF
    On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. Over 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile debris flow that transported boulders >20 m in diameter, and scoured the valley walls up to 220 m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure resulted in a disaster, which highlights key questions about adequate monitoring and sustainable development in the Himalaya as well as other remote, high-mountain environments

    FYVE-Dependent Endosomal Targeting of an Arrestin-Related Protein in Amoeba

    Get PDF
    International audienceBACKGROUND: Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. METHODOLOGY AND PRINCIPAL FINDINGS: A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. SIGNIFICANCE: This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes

    Actin binding domains direct actin-binding proteins to different cytoskeletal locations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamin (FLN) and non-muscle α-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell.</p> <p>Results</p> <p>We have constructed fusion proteins consisting of green fluorescent protein (GFP) with either the entire cross-linking protein or its actin-binding domain (ABD) and examined the localization of these fluorescent proteins in living cells under a variety of conditions. The full-length fusion proteins, but not the ABD's complemented the defects of cells lacking both endogenous proteins indicating that they are functional. The localization patterns of filamin (GFP-FLN) and α-actinin (GFP-αA) were overlapping but distinct. GFP-FLN localized to the peripheral cell cortex as well as to new pseudopods of unpolarized cells, but was observed to localize to the rear of polarized cells during cAMP and folate chemotaxis. GFP-αA was enriched in new pseudopods and at the front of polarized cells, but in all cases was absent from the peripheral cortex. Although both proteins appear to be involved in macropinocytosis, the association time of the GFP-probes with the internalized macropinosome differed. Surprisingly, the localization of the GFP-actin-binding domain fusion proteins precisely reflected that of their respective full length constructs, indicating that the localization of the protein was determined by the actin-binding domain alone. When expressed in a cell line lacking both filamin and α-actinin, the probes maintain their distinct localization patterns suggesting that they are not functionally redundant.</p> <p>Conclusion</p> <p>These observations strongly suggest that the regulation of the binding of these proteins to actin filaments is built into the actin-binding domains. We suggest that different actin binding domains have different affinities for F-actin filaments in functionally distinct regions of the cytoskeleton.</p

    Induction of Guanylate Binding Protein 5 by Gamma Interferon Increases Susceptibility to Salmonella enterica Serovar Typhimurium-Induced Pyroptosis in RAW 264.7 Cells▿

    No full text
    The regulation of caspase-1 activation in macrophages plays a central role in host defense against bacterial pathogens. The activation of caspase-1 by the detection of bacterial products through Nod-like receptors leads to the secretion of mature interleukin-1β (IL-1β) and IL-18 and the induction of rapid host cell death (pyroptosis). Here, we report that pyroptosis induced by Salmonella enterica serovar Typhimurium can be positively regulated by prior gamma interferon (IFN-γ) stimulation of RAW 264.7 cells. This increase in cell death is dependent on both caspase-1 activation and, in part, Salmonella pathogenicity island 1 (SPI-1) expression by Salmonella. Furthermore, the exogenous expression of the IFN-γ-induced protein guanylate binding protein 5 (GBP-5) is sufficient to induce a heightened susceptibility of RAW 264.7 cells to Salmonella-induced pyroptosis, and the endogenous expression of GBP-5 is important for this phenomenon. RAW 264.7 cells with decreased expression of GBP-5 mRNA (inhibited by short hairpin RNA against GBP-5) release twofold less lactate dehydrogenase (a marker of membrane permeability) upon infection by invasive S. enterica serovar Typhimurium than do infected control cells. Importantly, 3× FLAG-tagged GBP-5 is localized to membrane ruffles, which contact invasive Salmonella, and is found on the membranes of spacious phagosomes containing Salmonella (although it is also found in the cytoplasm and on other cellular membranes), placing 3× FLAG GBP-5 at the interface of secreted SPI-1 effectors and host protein machinery. The regulation of pyroptosis by the IFN-γ-induced protein GBP-5 may play an important role in the host defense against Salmonella enterica serovar Typhimurium and perhaps other invasive bacterial pathogens

    Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

    No full text
    Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum–classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity—which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes—has both high Q and small modal volume V, as required for strong light–matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth
    corecore