137 research outputs found

    Transcriptional Profiles of Skeletal Muscle Associated With Increasing Severity of White Striping in Commercial Broilers

    Get PDF
    Development of the white striping (WS) abnormality adversely impacts overall quality of broiler breast meat. Its etiology remains unclear. This study aimed at exploring transcriptional profiles of broiler skeletal muscles exhibiting different WS severity to elucidate molecular mechanisms underlying the development and progression of WS. Total RNA was isolated from pectoralis major of male 7-week-old Ross 308 broilers. The samples were classified as mild (n = 6), moderate (n = 6), or severe (n = 4), based on number and thickness of the white striations on the meat surface. The transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique. Gene expression patterns of each WS severity level were compared against each other; hence, there were three comparisons: moderate vs. mild (C1), severe vs. moderate (C2), and severe vs. mild (C3). Differentially expressed genes (DEGs) were identified using the combined criteria of false discovery rate 64 0.05 and absolute fold change 651.2. Differential expression of 91, 136, and 294 transcripts were identified in C1, C2, and C3, respectively. There were no DEGs in common among the three comparisons. Based on pathway analysis, the enriched pathways of C1 were related with impaired homeostasis of macronutrients and small biochemical molecules with disrupted Ca2+-related pathways. Decreased abundance of the period circadian regulator suggested the shifted circadian phase when moderate WS developed. The enriched pathways uniquely obtained in C2 were RNA degradation, Ras signaling, cellular senescence, axon guidance, and salivary secretion. The DEGs identified in those pathways might play crucial roles in regulating cellular ion balances and cell-cycle arrest. In C3, the pathways responsible for phosphatidylinositol 3-kinase-Akt signaling, p53 activation, apoptosis, and hypoxia-induced processes were modified. Additionally, pathways associated with a variety of diseases with the DEGs involved in regulation of [Ca2+], collagen formation, microtubule-based motor, and immune response were identified. Eight pathways were common to all three comparisons (i.e., calcium signaling, Ras-associated protein 1 signaling, ubiquitin-mediated proteolysis, vascular smooth muscle contraction, oxytocin signaling, and pathway in cancer). The current findings support the role of intracellular ion imbalance, particularly Ca2+, oxidative stress, and impaired programmed cell death on WS progression

    Insights Into Transcriptome Profiles Associated With Wooden Breast Myopathy in Broilers Slaughtered at the Age of 6 or 7 Weeks

    Get PDF
    open9siThis research was financially supported by Cluster and Program Management, National Science and Technology Development Agency (Thailand; project number P15-50668), and by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (Thailand; P20-50946 and P21-50165).Transcriptomes associated with wooden breast (WB) were characterized in broilers at two different market ages. Breasts (Pectoralis major) were collected, 20-min postmortem, from male Ross 308 broilers slaughtered at 6 and 7 weeks of age. The breasts were classified as “non-WB” or “WB” based on palpation hardness scoring (non-WB = no abnormal hardness, WB = consistently hardened). Total RNA was isolated from 16 samples (n = 3 for 6 week non-WB, n = 3 for 6 week WB; n = 5 for 7 week non-WB, n = 5 for 7 week WB). Transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique, and compared between non-WB and WB samples of the same age. Among 6 week broilers, 910 transcripts were differentially expressed (DE) (false discovery rate, FDR < 0.05). Pathway analysis underlined metabolisms of glucose and lipids along with gap junctions, tight junction, and focal adhesion (FA) signaling as the top enriched pathways. For the 7 week broilers, 1,195 transcripts were identified (FDR < 0.05) with regulation of actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, protein processing in endoplasmic reticulum and FA signaling highlighted as the enriched affected pathways. Absolute transcript levels of eight genes (actinin-1 – ACTN1, integrin-linked kinase – ILK, integrin subunit alpha 8 – ITGA8, integrin subunit beta 5 – ITGB5, protein tyrosine kinase 2 – PTK2, paxillin – PXN, talin 1 – TLN1, and vinculin – VCL) of FA signaling pathway were further elucidated using a droplet digital polymerase chain reaction. The results indicated that, in 6 week broilers, ITGA8 abundance in WB was greater than that of non-WB samples (p < 0.05). Concerning 7 week broilers, greater absolute levels of ACTN1, ILK, ITGA8, and TLN1, accompanied with a reduced ITGB5 were found in WB compared with non-WB (p < 0.05). Transcriptional modification of FA signaling underlined the potential of disrupted cell-cell communication that may incite aberrant molecular events in association with development of WB myopathy.openMalila, Yuwares; Uengwetwanit, Tanaporn; Thanatsang, Krittaporn V.; Arayamethakorn, Sopacha; Srimarut, Yanee; Petracci, Massimiliano; Soglia, Francesca; Rungrassamee, Wanilada; Visessanguan, WonnopMalila, Yuwares; Uengwetwanit, Tanaporn; Thanatsang, Krittaporn V.; Arayamethakorn, Sopacha; Srimarut, Yanee; Petracci, Massimiliano; Soglia, Francesca; Rungrassamee, Wanilada; Visessanguan, Wonno

    Differential expression patterns of genes associated with metabolisms, muscle growth and repair in Pectoralis major muscles of fast- and medium-growing chickens

    Get PDF
    The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age

    Monitoring of white striping and wooden breast cases and impacts on quality of breast meat collected from commercial broilers ()

    Get PDF
    Objective This study aimed at investigating white striping (WS) and wooden breast (WB) cases in breast meat collected from commercial broilers. Methods A total of 183 breast samples were collected from male Ross 308 broilers slaughtered at the age of 6 weeks (n = 100) and 7 weeks (n = 83). The breasts were subjected to meat defect inspection, meat quality determination and histology evaluation. Results Of 183, 4 breasts from 6-week-old broilers were classified as non-defective while the others exhibited the WS lesion. Among the 6-week-old birds, the defective samples from the medium size birds (carcass weight ≤2.5 kg) showed mild to moderate WS degree with no altered meat quality. Some of the breasts from the 6-week-old birds with carcass weight above 2.5 kg exhibited WB in accompanied with the WS condition. Besides of a reduction of protein content, increases in collagen matter and pH values in the defective samples (p<0.05), no other impaired quality indices were detected within this group. All 7-week-old broilers yielded carcasses weighing above 2.5 kg and showed abnormal characteristics with progressive severity. The breasts affected with severe WS and WB showed the greatest cook loss, hardness, springiness and chewiness (p<0.05). Development of WB induced significantly increased drip loss in the samples (p<0.05). Histology indicated necrotic events in the defective myofibers. Based on logistic regression, increasing percent breast weight by one unit enhanced the chance of WS and WB development with advanced severity by 50.9% and 61.0%, respectively. Delayed slaughter age from 6 to 7 weeks increased the likelihood of obtaining increased WS severity by 56.3%. Conclusion Cases of WS and WB defects in Southeast Asia have been revealed. Despite few cases of the severe WS and WB, such abnormal conditions significantly impaired technological properties and nutritional quality of broiler breasts

    Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress

    Get PDF
    The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress

    Elevated Seawater Temperatures Decrease Microbial Diversity in the Gut of Mytilus coruscus

    Get PDF
    The gut microbial community is critical for the host immune system, and in recent years, it has been extensively studied in vertebrates using 'omic' technologies. In contrast, knowledge about how the interactions between water temperature and diet affect the gut microbiota of marine invertebrates that do not thermoregulate is much less studied. In the present study, the effect of elevated seawater temperature and diet (Isochrysis zhanjiangensis and Platymonas helgolandica var. tsingtaoensis) on the gut microbial community of the commercial mussel, Mytilus coruscus, was investigated. The 16S rRNA gene sequencing was used to characterize the microbial community in M. coruscus gut. The mortality of M. coruscus exposed to a high water temperature (31 degrees C) increased after 3 days and the diversity of the bacterial community in the gut of live M. coruscus was significantly reduced. For example, the abundance of Bacteroides (Bacteroidetes) and norank_Marinilabiaceae (Bacteroidetes) increased in the gut of M. coruscus fed I. zhanjiangensis. In M. coruscus fed P. helgolandica, the abundance of Arcobacter (Proteobacteria) and norank_Marinilabiaceae increased and the abundance of unclassified_Flavobacteriaceae (Bacteroidetes) decreased. The results obtained in the present study suggest that high temperatures favored the proliferation of opportunistic bacteria, including Bacteroides and Arcobacter, which may increase host susceptibility to disease. Microbial community composition of the gut in live M. coruscus was not impacted by the microalgal diet but it was modified in the group of mussels that died. The present study provides insight into the potential effects on the gut microbiome and mussel-bacteria interactions of rising seawater temperatures.Ministry of Science and Technology of China [2016YFE0131900]; National Natural Science Foundation of China [41476131]; Peak Discipline Program for Fisheries from the Shanghai Municipal Governmen

    Improvement of Moist Heat Resistance of Ascorbic Acid through Encapsulation in Egg Yolk&ndash;Chitosan Composite: Application for Production of Highly Nutritious Shrimp Feed Pellets

    No full text
    Egg yolk (EY) is an excellent supplement for aquatic animals and has good technofunctionality. Ascorbic acid (AA) is a potent bioactive substance and is essentially added to shrimp feed; however, it is drastically lost in both feed processing and in rearing environments. In this study, AA was microencapsulated in an EY&ndash;chitosan (CS) composite. The encapsulated vitamin was then mixed into a shrimp feed mixture to form pelleted feed via twin-screw extrusion. The effects of the EY/AA ratio and the amount of CS on moist heat resistance, production yield, encapsulation efficiency (EE), and morphology of microcapsules were investigated. The molecular interaction of the microcapsule components was analyzed by FTIR. The size and size distribution of the microcapsules were determined using a laser diffraction analyzer. The microstructure was evaluated by SEM. The physical properties of the microcapsule-fortified pelleted feed were determined. The AA retention at each step of feed processing and during exposure to seawater was evaluated. The results showed that the microcapsules had a spherical shape with an average diameter of ~6.0 &mu;m. Decreasing the EY/AA ratio significantly improved the production yield, EE, and morphology of the microcapsules. EY proved to be the key component for moist heat resistance, while CS majorly improved the production yield, EE, and morphology of the microcapsules. The microcapsules showed no adverse impact on feed properties. The loss of AA in food processing and seawater was remarkably improved. The final content of the encapsulated AA remaining in shrimp feed was 16-fold higher than that of the unencapsulated AA
    • …
    corecore