2,798 research outputs found

    La Promoció immobiliària: Un negoci fàcil en un moment difícil

    Get PDF

    Different regimes of Forster energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals

    Full text link
    We calculate the rate of non-radiative, Forster-type energy transfer (ET) from an excited epitaxial quantum well (QW) to a proximal monolayer of semiconductor nanocrystal quantum dots (QDs). Different electron-hole configurations in the QW are considered as a function of temperature and excited electron-hole density. A comparison of the theoretically determined ET rate and QW radiative recombination rate shows that, depending on the specific conditions, the ET rate is comparable to or even greater than the radiative recombination rate. Such efficient Forster ET is promising for the implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure

    Effect of inter-wall surface roughness correlations on optical spectra of quantum well excitons

    Full text link
    We show that the correlation between morphological fluctuations of two interfaces confining a quantum well strongly suppresses a contribution of interface disorder to inhomogeneous line width of excitons. We also demonstrate that only taking into account these correlations one can explain all the variety of experimental data on the dependence of the line width upon thickness of the quantum well.Comment: 13 pages, 8 figures, Revtex4, submitted to PR

    Excitonic effects in solids described by time-dependent density functional theory

    Get PDF
    Starting from the many-body Bethe-Salpeter equation we derive an exchange-correlation kernel fxcf_{xc} that reproduces excitonic effects in bulk materials within time-dependent density functional theory. The resulting fxcf_{xc} accounts for both self-energy corrections and the electron-hole interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb tail. Taking the example of bulk silicon, we show that the α/q2- \alpha / q^2 divergency is crucial and can, in the case of continuum excitons, even be sufficient for reproducing the excitonic effects and yielding excellent agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur

    Exact exchange-correlation potential for a time-dependent two electron system

    Get PDF
    We obtain an exact solution of the time-dependent Schroedinger equation for a two-electron system confined to a plane by an isotropic parabolic potential whose curvature is periodically modulated in time. From this solution we compute the exact time-dependent exchange correlation potential v_xc which enters the Kohn-Sham equation of time-dependent density functional theory. Our exact result provides a benchmark against which various approximate forms for v_xc can be compared. Finally v_xc is separated in an adiabatic and a pure dynamical part and it is shown that, for the particular system studied, the dynamical part is negligible.Comment: 23 pages, 6 figure

    Scattering of a proton with the Li4 cluster: non-adiabatic molecular dynamics description based on time-dependent density-functional theory

    Full text link
    We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behaviour of a proton with the Li4_4 cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.Comment: 18 pages, 4 figure

    Many-body diagrammatic expansion in a Kohn-Sham basis: implications for Time-Dependent Density Functional Theory of excited states

    Full text link
    We formulate diagrammatic rules for many-body perturbation theory which uses Kohn-Sham (KS) Green's functions as basic propagators. The diagram technique allows to study the properties of the dynamic nonlocal exchange-correlation (xc) kernel fxcf_{xc}. We show that the spatial non-locality of fxcf_{xc} is strongly frequency-dependent. In particular, in extended systems the non-locality range diverges at the excitation energies. This divergency is related to the discontinuity of the xc potential.Comment: 4 RevTeX pages including 3 eps figures, submitted to Phys. Rev. Lett; revised version with new reference

    Vortex microavalanches in superconducting Pb thin films

    Full text link
    Local magnetization measurements on 100 nm type-II superconducting Pb thin films show that flux penetration changes qualitatively with temperature. Small flux jumps at the lowest temperatures gradually increase in size, then disappear near T = 0.7Tc. Comparison with other experiments suggests that the avalanches correspond to dendritic flux protrusions. Reproducibility of the first flux jumps in a decreasing magnetic field indicates a role for defect structure in determining avalanches. We also find a temperature-independent final magnetization after flux jumps, analogous to the angle of repose of a sandpile.Comment: 6 pages, 5 figure

    Commensurate and Incommensurate Vortex States in Superconductors with Periodic Pinning Arrays

    Full text link
    As a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations in systems with square or triangular arrays of pinning sites. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays [K. Harada et al., Science 274, 1167 (1996)].Comment: 9 pages, 3 figures. Accepted to Physical Review

    The Anderson Model out of equilibrium: Time dependent perturbations

    Full text link
    The influence of high-frequency fields on quantum transport through a quantum dot is studied in the low-temperature regime. We generalize the non crossing approximation for the infinite-U Anderson model to the time-dependent case. The dc spectral density shows asymmetric Kondo side peaks due to photon-assisted resonant tunneling. As a consequence we predict an electron-photon pump at zero bias which is purely based on the Kondo effect. In contrast to the resonant level model and the time-independent case we observe asymmetric peak amplitudes in the Coulomb oscillations and the differential conductance versus bias voltage shows resonant side peaks with a width much smaller than the tunneling rate. All the effects might be used to clarify the question whether quantum dots indeed show the Kondo effect.Comment: 13 pages, REVTEX 3.0, 5 figure
    corecore