We calculate the rate of non-radiative, Forster-type energy transfer (ET)
from an excited epitaxial quantum well (QW) to a proximal monolayer of
semiconductor nanocrystal quantum dots (QDs). Different electron-hole
configurations in the QW are considered as a function of temperature and
excited electron-hole density. A comparison of the theoretically determined ET
rate and QW radiative recombination rate shows that, depending on the specific
conditions, the ET rate is comparable to or even greater than the radiative
recombination rate. Such efficient Forster ET is promising for the
implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure