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Exact exchange-correlation potential for a time-dependent two-electron system
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We obtain a solution of the time-dependent Sdimger equation for a two-electron system confined to a
plane by an isotropic parabolic potential whose curvature is periodically modulated in time. From this solution
we compute thé‘exact” time-dependent exchange correlation potentigl, which enters the Kohn-Sham
equation of time-dependent density functional theory. Oexact result provides a benchmark against which
various approximate forms far,. can be compared. Finally;,. is separated in an adiabatic and a pure
dynamical part and it is shown that, for the particular system studied, the dynamical part is negligible.
[S0163-18299)01011-5

I. INTRODUCTION As in the time-independent DFT, the main problem in
TDFT is to find a good approximation far,.([ p(r,t)];r,t).

The time-dependent density-functional théo”R(TDFT)  Among the most used approximations we mention the adia-
maps an interacting time-dependéxelectron system, de- batic local-density approximatio®LDA ),* which is a direct
scribed by a Hamiltonian of the form extension of the static LDA to the time-dependent problem,

5 and the optimized effective potential approximaﬁcﬁ@EP)
B Pi in which v,.([p(r,t)];r,t) is written as a functional of the
H_Zi ﬁﬂ; V(ri—rj)+2i Vexdri 1), (1) single-particle orbitals andusually only the exchange
part is considered. Both approximations determine
with pj=—i4V; the momentum operator of the single par-y,.([p(r,t)];r,t) at timet as a function of the densitfor
ticle, V(ri—r;) the two-particle interaction potentigh/(r; single-particle orbitalsat thesametime. Attempts to include
—r))= e?l|ri— ri| for Coulomb interactioh and v e,(r; ,t) the “memory” of the xc potential, i.e., its dependence on the
the time-dependent external potential, to a noninteractinglensity at earlier times, have been hampered by the fact that
time-dependenN-electron system having the same densitysuch a retarded potential is a severely nonlocal functional of
p(r,t). In this formalism the new Hamiltonian, also known the density, i.e., it does not possess a gradient expansion in
as the “Kohn-Sham”(KS) Hamiltonian, can be written as: terms of the densit.’ For example an early attempt by
Gross and Kohh(GK) to incorporate retardation within the
frame of the LDA was found to be plagued by inconsisten-

HKS:Ei hies(ripi 1), 2 cies, such as the failure to satisfy the “harmonic potential
theorem’® and other exact symmetri@. Only very
where recently® 1% a consistent local approximation including re-
tardation has been formulated within the frame of the
piz current-density functional theof@CDFT), in which the cur-
hs(risPi )= 5 =+ vexdTis ) +om(ri,) rent density, rather than the density, is used as the basic
variable.
Toxl[p(r,t)]iri ) ©) In practice, it is not always easy to decide which of the

. . . L above approximations works best in a concrete application.
is the effective one-particle Hamiltonian. Apart from a comparative study of the performance of different approxi-
the external [ve,(ri.t)] and the Hartree [vn(ri.t)  mations in a simple and well-controlled situation would be
=Jdr'p(r’,t)/|ri—r’|] part, the potential contains an yery yseful. As a first step in this direction, we present, in
“exchange-correlation”(xc) term [vyc([p(r,t) I;ri )] that  ihig' paper, an &xact (in the sense of highly numerically

is an unknownfunctional of the density. In the TDFT for- 5ccyratg calculation of the xc potential for what is probably

malism the wave function of the effective noninteracting sySthe simplest nontrivial model of interacting electrons in a
tem is a Slater determinant bfone-particle orbitalgi(r,t),  time-dependent external potential. This model consists of

which satisfies the equation: two electrons, in two dimensions, subjected to a parabolic
potential, whose curvatur@vhich is always positiveis pe-

hea(F,p,t) @i t)=iﬁ£qo-(l’ ). 4) riodically modulated in time. A concrete realization of the
KSULEEFRD TR model could be two electrons in a quantum ddt with a

_ . . time-dependent parabolic confinement potential. We shall
The particle density can then be written as: show that(i) the time-dependent Schiimger equation for

this system is exactly solvable by a combination of numeri-
p(r,t):Z loi(r )2, (5) cal and analytical methods ard) the knowledge of the

exact solution can be used to compute the exact xc po-
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tential. Our solution fow ([ p(r,t)];r,t) turns out to be the A. Solution in the CM channel
time-dependent generalization of similar calculations re-
cently performed in the static ca5&€The value of these re- . ) _
sults lies in the fact that they provide a rigorous benchmark, The problem of a quantum harmonic oscillator with a
against which the merits or demerits of various approximatdime-dependent frequency has been studied by several
theories can be assessed. authors:* Equation(7) is analytically solvable for a general
This paper is organized as follows. In Sec. Il we discusgPeriodic or nof o(t). The angular momentum is a constant
the model and the éxact solution of the corresponding of mo'_uon and this allows_the separ_atlon of a_\ngular and radial
time-dependent Schdinger equation. In Sec. Ill we con- coordinates. So we obtain the radial equation:
struct theexact xc potential and fieldg, ([ p(r,t)];r,t)= 5 5
—Vu,(p(r,t)];r,t) both in the TDFT and in the time- _Ea__lii+wz(t)7zz+}m_ (R.t)
dependent CDFT, and we discuss the difference between the 4 9mR2 4RIR 42 Xn,mi 7
two forms. We also compare our result with the known static
limit.*3 In Sec. IV, we draw a comparison between owx“
act’ results and the ALDA, OEP, and GK approximations as
well as the new approximation presented by Vignale, Ull-
rich, and Conti*® (VUC). In Sec. V we introduce a separa-
tion between thg adiab_atic ar_wd the truly dynamip pai Qf. T em(RD) = xn m( Ry DO (D), (12)
We conclude with a discussion and summary in Sec. VI. ’

1. General analytical solution

J
:iﬁXn,m(th)v (10)

where

with

Il. THE MODEL 1 )
, . , . On(9)=—=—e""’, (12)
We consider two interacting electrons of effective mass N2

m* in a two-dimensional(2D) harmonic potential with fre-
guency w(t) periodic in time. The background dielectric
constant ise. The corresponding time-dependent Sehro
dinger equation in atomic unitgiE e/ Je=m*=1) is:

wheremis a positive integer denoting teonstank angular
momentum and) is the angular coordinate of the center of
mass.

The general solution of Eq10) is given by:
1 1 1 | d¢ (m+1)/2
— (V2 VY 2 02 (12412 + —|W(ryry) :‘/L(_ i
5 (Vi+ Vo) +5 0 ((r+r3 - (ruro Xnm(R,1) ot exp{i(2n+m+1)
d
=i W(ryro), (6) X[p(0) = p(D)]}2"R™
d dIn|X d
. _ _ Xexp{(——(bﬂ | |)R2}an(—¢27€2),
wherer, andr, are the electronic coordinates ang is the dt dt dt

distance between the electrons. Introducing the center of (13)
mass(CM) and relative motion(RM) coordinatesR=(r,
+r,)/2 andr=r;—r,, Eq. (6) decouples in the two equa- WhereX(t) is acomplexsolution of the classical equation of

tions: motion
S 9 X(t)=—*DX(), (14
<_ZVR+0’ (OR )‘I’CM(R,U:'E‘I’CM(RI) (7) X(t) = |X(t)| &40 (15
with a phasep(t) satisfying the condition
(—v$+ %wz(t)r2+% Way(r,t)=i %WRM(r,t), (8) de
E>O' (16)

where The details of the derivation of E¢L3) are given in Appen-

dix A, where it is also shown that such a solution can always
W(ryr)=¥em(R,)Wrp(r,t) (9  be constructed starting from two linearly independent real
solutions of Eq.(14).
is the orbital part of the wave function. The spin state can be We stress that Eq$12) and(13) provide a complete set
either a singlet or a triplefwe assume 3D isotropy for the of solutions of Eq(7) for whateverw(t), provided that the
spin S). The RM wave function must be even or odd undercondition (16) is satisfied.
inversionr— —r, depending on whetheé8=0 or S=1, re- In the special case of an initial value problem, i.e., if the
spectively. wave function is specified a&=0 as
For simplicity of notation, we are usingr” to indicate

the RM coordinate going back tor%,” only where needed Vo (rRO=S ¢ ROO (I 1
to avoid confusion. cm(R.0) ;n nmXn,m(R,00 (), 17)
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with xp m(R,0)®,,(9) the eigenfunctions ofi(0), thesub- X Td Tde
sequent time evolution is given by iK=f YdtZJ mln|X|dt+iJ’ Edt=i[¢(T)—¢(0)].
0 0 0

(25
Vem(RD=2 Comtnm(RODOR(D),  (18)
n.m The last equality holds becausfd In|X|/dtdt=0 since
with the initial condition forX(t) In[X(t)| is periodic. At the border of the classical regions of

instability e’ =+ 1, the Floquet solutiong, n(R,t)—0 and
1 the set of %E{Sn,m} degenerates t¢0} if =1 or to

X(0)= 19 0,m/T} if e=—1.

(0) N 19 { }

»(0) In the remaining regions of classical instability solutions
. ) of the Floquet type cannot be constructed. These regions are
X(0)=iVw(0), (200 centered around the valugs=2wo/k, k=0,1,2 ... (with
wherew(0) is the frequency of the harmonic oscillator at the@o _ the lBT{gquency of the _unperturbed harmonic
initial time. oscillatop, so that the valu€)l=0 is an accumulation
point for the sequence. This means thatif0, it is not
2. Floguet ansatz possible to perform the limi€ — 0 without entering regions
of parametric resonance and so it is not possible to follow the
evolution of a Flogquet state from a finif¢ down to 0. We
remark that the occurrence of classical parametric resonance
is related to a failure of the conventional Floquet theorem,
V(t+T)=e #TW(1), 21) which ensures the _existence of a complete_ set of Floqget
states. The reason is that our harmonic oscillator potential,
where ¢ (real for bound statgsare calledQuasi-energies being not bounded, gives rise to a strictly hermitian Hamil-
(QE). The QE are defined moduld=2=/T. This particular  tonian and allows only Floquet states with real QE: evi-
basis set has properties that are similar to those of the eigedently, such quasiperiodic states cannot describe the motion

If the Hamiltonian is periodic in timgin this case if
o(t+T)=w(t), whereT is the period, we can look for a
basis set of solutions satisfying the Floquet ansatz*

states of a static Hamiltonidn. of an electron to larger and larger distance from the center
In our calculations, we have chosen fof(t) the form: that the resonance process would imply. Realistic bounded
) ) potentials avoid this problem by allowing the possibility of
0 ()= wg[ 1+ cogQt)]. (22 complex QE in which the electron can escape to infinity
(ionization.

To construct Floquet-type solutions of H40) let us first
of all define the Floquet solutions of the classical equation of

motion (14) (Refs. 18 and 1Pas the solutionXg(t) having B. Solution in the RM channel

the property As we did for the CM channel, we separate the angular
" and radial coordinates in E¢8) and we obtain the radial
Xe(t+T)=e"Xg(1). (23)  equation:
There exist two solutions of this kifd™® corresponding to , ,
two eigenvalueg'¥12 (with K, = —K,) either complex con- o 19

1 1 |
_ T2t D —
jugate and lying on the unit circle of the complex plane or gr2 ror + 4¢ (Oro+ r + r2 Y (1,1)

real and inverse to each other. In the former case the solu-
tions Xg(t) remain bounded in time; in the latter, one of . d
them increases exponentially far—o, a phenomenon =1 ﬁ‘/’nvl(r’t)'
known asparametric resonanceThe actual value oK as a
function of A and() can be calculated from E@14). In this  where
way thel,Q) plane can be separated in classically stable and
unstable regions. The border of the regions of parametric Wem(r,t)=in (r, 1)@ (), (27)
resonance are then defined by the condit@f= =+ 1. )
It is evident, from the form of the general soluti¢h3), ~ With
that Floquet solutions with real QE exist within the regions
of classical stability. In these regions the two classical Flo- il
guet solutions are complex conjugate. This means that one of 0,(9)= \/?e ' (28)
the two will always satisfy the conditiofil6) (see also the 7
equivalent condition in Appendix AIf we choose this par- 5nq] a positive integer, even fo=0 and odd forS=1.
ticular solution as the one that determines the time depengere g is the angular coordinate for the RM channel. Equa-

dence ofy,,m(R,t) in Eq. (13), then the{xn m(R,1)} forma  on (26) cannot be solved analytically except in the follow-
basis of Floquet wave functions with QE: ing special cases.

(26)

K (1) Time independent cas€he static limit A =0) has been
enm=F(2n+m+1). (24 well analyzed in three-dimensithand for certain values of
the frequencyw, of the unperturbed harmonic oscillator it is
To derive Eq.(24) we made use of the relation: possible to have a completely analytical solution also for the
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RM channel(see Ref. 2D Similarly, it is possible to con- Eers(t)
struct an analytical solution in the two-dimensional césee Xo(t)=— % (36)
appendix B. Bwp—

(2) Weak correlation limitWe define the weak correla- = . . .
tion limit as the regime in which the Coulomb interaction is agd forX(t) the classical Floquet solution of E(@4) with

negligible compared to the harmonic confinement potentiald¢/dt>0, we obtain a Floguet solution for the RM problem.

This means that In the general case E¢6) must be solved numerically,

| and, to constructv,(r,t) or E,(r,t), the most natural
-0, (29 choice is to consider the dynamical equivalent of the ground
a state, that is, for the RM channel, the “lowest” Floquet state

where | =\#/2m* v, is the confinement length due to the WE(r )=o)/ y2m. We define this as the state that
harmonic potential and=7%2e/m*e? is the effective Bohr evolves continuously from the ground state of the static

radius. In our units & =e/ Je=m* =1) this is equivalent to Hamil_tonian as the amplitude of the time-dependent per-
imposing wo—. In this regime the coulombic term be- turbation grows from zero. From now on we only consider

comes negligible and the RM problem becomes analytically =0 (@nd correspondinglyn=0 for the CM channg!
solvable(see part A of this section In order to calculate this Floquet state we use its property

(3) Strong correlation limit in the linear response ap- of being an eigenstate of the one-period time-evolution op-

proximation with respect to. In this limit the Coulomb erator U(T) [W(r,t+T)=U(T)¥(r,t)] with eigenvalue

interaction dominates the harmonic confinement potentiale "' [see Eq.(21)]. The idea is to calculate the matrix
This means {U(T);;} in a suitable basis, diagonalize it and find its “low-
est” eigenstate—the “lowest” Floquet state. The basis we

I choose to calculat¢U(T);;} is the set of eigenstates of a
a7 (30 two-dimensional harmonic oscillator with angular momen-

tum equal to zero{Ri(r,0)}. For a general instant
(so in our unitswy—0) and the two electrons can be shownyt {U(1);;} are defined by the equation:
to perform small oscillations about the classical equilibrium
position determined by the competition between electrostatic M
repulsion and harmonic confinement. Expanding the poten- Rj(r,t)zz U(t);;Ri(r,0), 37
tial energy to the second order in the displacement from the =t
classical equilibrium distancey>| and neglecting correc- where the sum has been truncated for practical purposes. In
tions of orderl/r to the kinetic energy one obtains the ef- our calculationM =60—a value that ensures a very good
fective harmonic Hamiltonian convergence of the lowest QE's. Inserting for e&r,t)
5 the expressiol37) into Eq.(26), we find forU(t);; a system
Pr u~ of M first-order differential equations. Integrating this system
Hers(t)= E“L sz(t)(r ~10)*~ uEexa(D(r =), over one periodfor each R(r,t), we obtain{U(T);;}. Since
(31)  the QEe; are defined modul®),® it is not possible to es-
5 - _ ~ tablish from the value of the eigenvaluesW(T) the “low-
wherepy=—9/drc, u=1/2 is the reduced mas&(t)  est’ one. To identify it we have instead used the property

=3wi+wi(t), wi(t) is defined as that forA—0, e;—&), wheree? is an eigenvalue of the
, ) static \ =0) Hamiltonian‘>'’n practice we have followed
01(1)= woh cog 1), (32 the evolution of the ground-state energg for increasing
N'S.
|

and Eextl(t)z—wf(t)ro can be viewed as an “externa
force.” Apart from time-dependent phase factgsee Ap-

pendix C for these factors and for details of the derivation IIl. CONSTRUCTION AND CALCULATION

OF THE “EXACT” EXCHANGE-CORRELATION

the solution, fom=1=0, takes the form:
POTENTIAL
1/4 ' o
W(r b= <_¢) o X001~ o) (112K o xp(1)]2 A. Construction in TDFT
w4l dt If we consider two electrons in a singlet state, the KS

(33 equations reduce to a single equation for the doubly occupied

- ital
with X(t) the solution of orbital ¢(r,t)

1
X=—02(1)X(1), (34) _§V2+Uext(r’t)+UH(rvt)+ch([p(rat)];ryt) o(r,t)

$(t) its phase such thaté/dt>0 andx,(t) the solution of 9
=i—relrt). (38)

Xo=~ Eexta(t) = @*()Xo(t). (35) _ _
The KS orbital can be written as
If we insert in Eq.(33) for x(t) its linear response approxi- .
mation expression o(r,t)=|o(r,t)efry, (39
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and its modulus is related to the density by the equation: 1
_— 012 40 HKS(t):Ei E[pi+Axc(riat)]2+UH(ri-t)+vext(rivt)]a
r! = rl L
p(r.)=2[e(r,b)] (40) a7)
while its phase is related to the KS velocitys(r,t) by ) . .
which yieldsboththe correct density and current. In the case
VE(r,t)=vgs(r,t). (41) of two electrons in a singlet state, we get, for the occupied

_ _ _ _ orbital ¢(r,t), the time-dependent Schiimger equation:
If we insert expressioi39) in Eqg. (38) and we impose that

vy p(r,t)];r,t) is real, we obtain two equations, one from
the real part of Eq(38):

E[p+Axc(rat)]2+UH(rut)+Uext(rat)} ) e(r,t)

1 2 1 2 14
2V Inp(r.H)+ §|Vln P(r O] = vex(r,t) —vy(r,t) =i—e(rb), (48)
— e[ p(r,OT;r )~ E|Vf(r,t)|2_ if(r,t):(), and we can now follow the same procedure used in TDFT to
ind an explicit expression fdE,(r,t). We obtain:
2 at find lici ion foE,(r,t). We obtai
(42) :
L . E H=—-A 't 4
and the second from its imaginary part xe(r,t) xe(r,t) (49)
d _ 1oz 1 2
V- VE(r )+ V(Y- Vinp(r,)+ —Inp(r,t)=0. ==V|zV Inp(r,)+ 2[Vinp(r.t)|
43 1 .
_ _ .2
Equation(42) can be solved fou,(r,t) (for simplicity of Eex(r.) —En(r,0+ V| 50% | +v, (50

notation we have dropped the dependence of the xc potential

on the densityand we find the following explicit expression: wherev(r,t) is the exact velocity of thinteractingsystem,
v(r,t)=VIf(r,t)+A(r,t), E4=—Vuvy andE.=—Vvey.
The expression for the vector potentha).(r,t) follows im-
mediately from Eq.(50) and from the definition Eq(49).
From the imaginary part of Eq48) (or equivalently from
the continuity equation we get the first-order partial-
differential equation

1 2 1 2
ch(rit):ZV |np(l’,t)+§|V|np(l’,t)| —Vexdl,t)

1 a
—vH(r,t)—§|Vf(r,t)|2—ﬁf(r,t). (44)

The corresponding expression for the xc electric field is P
Vev(r,t)+v(r,t)-Vinp(r,t)+ Eln p(r,t)=0. (51

Eyc(r,1)=—Vu,(r,1). (45
The last two terms of Eq(44) are peculiar of the time-  The advantage of this formulation is that it expresses
depgndent prpblem while the first four correspond to thee (r t) [andA,.(r,t)] as a function of the physical quanti-
static expressidr for v, tiesv(r,t) andp(r,t).
static, 1 2 1 2 i i
Uye (r)=ZV Inp(r)—+ §|V INp(r)|2=vexdr) —vp(r). C. Circularly symmetric states
(46) If the time-dependent state is circularly symmetric, as in

] ) i o ) } the case we are studying, then the current is purely radial,
Equation(43) is a first-order partial differential equation for therefore purely longitudinal, and the two expressiohs)
Vi and is equivalent to the continuity equation for the non-anq (50) coincide [that is v(r,t)=vys(r,t)]. Thus, in this
interacting KS system. It shows thags(r,t)=Vf(r,t) isin  case, there is no difference between the time-dependent DFT

general a nontrivial functional of the density. We stress thagng CDFT. Equatiort43) can be easily integrated yielding
vks(r,t) is in generahotthe same as the exact velocity field;

only the longitudinal part of the KS current must coincide 9 1 rap(r' t)
with the longitudinal part of the physical current due to the &_rf(r't): o t)J' g r'dr’.
continuity equation. p(r,t) Jo

(52

B. Construction in time-dependent CDFT D. Linear response

The time-dependent CDFT differs from the TDFT in that In the limit of small external time-dependent perturbation
not only the density but also the current density calculated\ — 0 in Eq.(22)], we expand all the quantities to first order
from the KS single-particle orbitals is exact. iN N\, i.€., Vex=Vextot Vextlr VH=UH0TUH 11 Uxc=Uxco

In order to accomplish this, one introduces an xc vector+uv, 1, and Inp=In py+p; /py Where the subscripts “0” and
potential A,. in the Kohn-Sham equatidl. The KS “1” indicate, respectively, zero and first order with respect
Hamiltoniar is now: to X. Then from Eq.(44) we obtain
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TABLE |. Parameters used in our numerical calculations. 05 . . . . .
wq Q Q/(l)o A
high corr.  (25—-3433)/328~0.02 0.1  =~4.2 0.1 0.4
low corr. 1 3.2 3.2 0.1
&
3
iy
1 1 ) — 03
Uyeo(l)= ZV Inpo+ §|V In po|*— v exto(r) —vn,o(r), =
=
(53 <
and 0.2
J 1 _,p1 p1
Uyer(r,)=——=Ff(r,t)+ = V2=+VInpg-V—
XC,l( ) ot ( ) 4 Po Po Po 0‘1
—Uext'l(l‘,t)—vHvl(l‘,t), (54)
where we have neglected also the terms of onsfr,t)
=|Vf(r,t)|2. Making use of the definitio45), it is easy to 0

recover from Eqs(53) and(54) the expressions fdE, o(r)
and Ey¢ o(r,t).

FIG. 1. Lowest Floquet-state electronic density for the weak
correlation casedy,=1). The solid line is the exact static result,
We have considered in detail two sets of the parameterghile each of the broken lines corresponds to different times. In the
wo, 1, andX\ that appear in Eq22), corresponding to high inset we show the corresponding velocity fiel(r,t). Each solid
and low correlation. The two sets are given in Table |. Theline corresponds to different times.
values of wy have been chosen such that it is possible to
construct analytically the solution of the corresponding statighe more traditionab,(r,t), since this is the meaningful
Schralinger equatiorisee Appendix B The values oh and  physical quantity whose asymptotic behavior does not de-
Q have been chosen so that the system is in the linear r@end on arbitrarily fixed time-dependent constants. As can be
sponse regime, but well above the regions of parametrig€en from the plots, as the correlation in the system in-

resonance for the CM channel and above the first excitatioreases, the positive peak Bf.(r,t) for smallr increases
energy of the system. too. Equivalently the minimum ob,, becomes more pro-
The “exact’ time-dependent densities are plotted in Figs. hounced, as the correlation increases, and moves away from
1 and 2. For the weak correlation parametgr=1 the den- the origin. This is related to the enhancement of the strength
sity is centered at the origin as we can expect from the exadf the Coulomb repulsion that pushes the maximum of the
solution in the weak correlation lim{a Gaussian centered at
the origin, see Sec.)ll In the case of high correlatiorwg o ' ' '
~0.02), on the other hand, the maximum of the density is at
finite distance fronr =0 in agreement with the form that the 0.004 -
RM wave function assumes in the strong correlation limit
Eq. (33) (an annulus of average radiug2, with r the clas-
sical equilibrium distance of the two electronthe increased
strength of the Coulomb repulsion in respect to the harmonic =
confinement pushes on average the two electrons far from —
each other. In these plots the solid line represents the static *:n
limit while each of the broken lines corresponds to the time " 0.002 |
dependenp(r,t) at different times. )
In the insets of Figs. 1 and 2 we plot the time-dependent
velocity v(r,t)=Vf(r,t), that is the other necessary ingre-
dient to calculatey,(r,t) andE,.(r,t). As the plots show, 0.001
the motion is approximately a “breathing” motion: the ve-
locity is zero at the origin while for #0 it increases almost
linearly. The asymptotic behavior is linear inwith a cor-

E. Calculation of the “exact” v,.(r,t)

v(r,t) (a/s)

e
S

0.003 1

rection in 1f2. In Fig. 3 (wo=1) and Fig. 4 (wo~0.02) we 0 - -

finally plot the results for the potential,.(r,t) [with the 0 5 10 15 20 25
conventionv,(r,t)—0 for r—oo] and for the fieldE,(r,t) 7 (ag)

(in the insets The solid line represents the static limit while

each of the broken lines corresponda1g(r,t)[ E,.(r,t)] at FIG. 2. Same as Fig. 1 but for the strong correlation cagg (

different times. We choose to plot al&g(r,t), along with  ~0.02).
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0 T ' ' ' andby, defined byby=— w?(t)by+ ¢ we get, with a little
0r algebra, the asymptotic form of the densjy(r,t)«r2*(1
+2by/r)exp(-r?¢)] and of the velocity [Vf(r,t)~
—r/2d(In ¢)/dt—bj/r2]. From these behaviors, using Eq.
(44), we can derive the asymptotic behavior for the xc po-
tential that results to be, aside from an irrelevant function of
the time only, the same as in the static casg= — 1/r for
r—oo,

In Figs. 3 and 4 we also plot, for comparison, the local
density approximation(LDA) of the static v,.(r) and
E,.(r). As can be seen from the figures, in the region plot-
ted, LDA differs from the ‘exact result mainly for an ir-
relevant constant. In fact, if we considiy, (insetg, LDA
1.2 y behaves, in general, reasonably well except for sméibr
which in the weak correlation case has even the wrong) sign
and for larger (for which decreases exponentiglly

02 exact

Ey(r, t) (Hartree/a)

vge(r,t) (Hartree)

-1.6 ' : : : IV. COMPARISON WITH APPROXIMATE THEORIES

0 0.5 1 1.5 2 25 _ . . .
r (a) In this section we discuss the comparison between our
“exact’ result for v,(r,t) andE,.(r,t) and the results ob-
tained from the most used approximations, namely the
case fo=1). The solid line is the static limit, while each of the ALDA, the OEP, the GK approximation, and the hydrody-
broken lines corresponds tg.(r 1) at different times. Asymptoti- Namic approximation recently introduced by VUC. The ex-
cally v, (r,t)~—1/r, as in the static case. For comparison the Pressions for the xc potential in these approximations are as

static LDA result is also plotted. In the inset we show the corre-follows.

FIG. 3. “Exact’ xc potential v,(r,t) for the weak correlation

sponding xc fieldE,(r,t). ALDA: 4
: . . d
density away from the origing,(r,t) can be viewed as a verPA(r )= —[p(r,0e(p)], (55)
force in the KS system which, where positive, contributes to dp
drag the particles away from the origin. where g,.(p) is the xc energy per particle of the homoge-

Starting from the asymptotic form of the RM wave g
. . . neous electron gas. In 2D it is given b
function for ry,—o, that is, Wryerif1l+ (by+ibsy)/ g g y

rlexp(—ri,¢/4), with « real, by=—[by+byd/(24)]/ ¢ 42 L% 1+ a4 -
8 = A L
3wy 2 1targtarstagrd? file
O |: T T T (56)
EPE - (57
O | = r =,
£ 02 e
S *
S 5 ap=—0.3568, a;=1.1300, a,=0.9052, a;=0.4165
— 008 | (Refs. 21 and 2p
*:« ' OEP approximatiorfwhich in this simple case is equiva-
3 lent to the Hartree-Fock approximatior
>
0.12 | 1
USCEP(F,I)Z—EUH(I’,I), (58)
sl N GK approximatiofi (valid in the linear response regimne
vsaa(r, @) =p1(r, ) el po, ®), (59
0.2 ' ' : ' wherev,.(r,») is a Fourier component af,. 4(r,t) [de-
0 5 10 15 20 fined, with p4(r,t), in the “Linear response” sectignand
r (a) fxe.L(po,w) is the longitudinal part of the frequency depen-

dentxc kernel of the homogeneous electron gas.

FIG. 4. Same as Fig. 3 but for the strong correlation case (  VUC approximatiof® for a circularly symmetric potential
~0.02). in 2D (valid in the linear response regime
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0025 = — . oo01sf " Tl T T T
o § 6K~ p ‘/i\exm ! h .
s e § /éEP < =
O g £
= N 04 08 12 16 2 — 00005 |
C}ﬁ 0.005 t " (a)‘ =S
é/ ‘.\‘\‘: é:
& 5 0
-0.005 | G o //,f}\\
~ 00005 7§ oo ZANN
§ 0 %“‘V-gc \\
-0.015 + E ’c?-o.m -
exact -0.001 ¢ §'°'°°°“ \ ________
0 2 4 6 8 10 12 14
) ) I1-(01) ) ) . .
-0.025 | ' ' ' 0 2 4 6 8§ 10 12 W4
0 04 0.8 1.2 16 2
r (a) r (a)
FIG. 5. Comparison between theeXact first Fourier compo- FIG. 6. Same as Fig. 5 but for the strong correlation casg (

nentv,(r,Q) of the xc potential and some of its most used ap_%0.0Z).

proximations(weak correlation casey,=1). In the inset we show

the corresponding comparison for the xc fi€lg.(r,t). strong correlation casgnset of Fig. 6,wy~0.02) it under-

estimates the potential for very smallbut, for intermediate
values, it gets closer tg,(r,{). For weak correlation and

vuc _ ALDA 1 2 for small values of the OEP approximation does not repro-
Uxe1 (110) =0y (T, @) L pO(V{pO fet(Po,®) duce the ‘exact behavior, Wr?ii)e in the region in Whigh
E,.(r,Q) is significantly nonzero it gets closer to thex-
d?p eyc|[vi(r, @)  dvi(r,w) act’ result. In the limit of zero correlation the OEP, which is
- dp? r + ar equivalent to the Hartree-Fock theory for this system, would

give the exact result. Its behavior gets worse when the cor-
2 relation increasesgsee Fig. & it is the only approximation
— FV[pSfXC’T(pO,w)]vl(r,w)) ldr (600  that does not even reproduces the first peak,gfr,{). On
the other hand, this is thenly approximation that has the
) ) ) correct asymptotic behavior 1/r? for r—. In the weak
where  vy(r,t) is  the velocity field and correlation caséFig. 5 the GK approximation has a behav-
fxe.L(Po,®),fxc7(po, @) are the longitudinal and the trans- jor similar to the OEP(except for the asymptotic behavior
verse part of the frequency dependewtkernel of the ho-  that is not reproduced correctywhile, for strong correlation
mogeneous electron gas. In E§0) we have made use of the (Fig. 6) it reproduces the correct trend but underestimates

relation Ay (r,t)=c['Vu,(r,7)d7 (see Ref. 10 E,(r.Q) for small values off and overestimates it for in-
In both GK and VUC we have used fdt (po,») the  termediate values. In the case of weak correlatféig. 5 the
expressions recently obtained by Nifegial: VUC approximation does not reproduce the exact trend for

The comparison between theeXact v, (r,t) and its  small r, while, for intermediate values it get closer to
approximations is made plotting its first Fourier componentg, (r,Q) though underestimating its peak. For strong corre-

vxe(r,€2). Since our calculations were done in the linear|ation its behavior is almost indistinguishable from the
response regime, the difference betweeg(r,{2) and ALDA.

Uxca(r,Q2) is negligible. Since the éxact wvyq4(r,Q) is
purely real at nonresonant frequencies, we compare it with  y, «Ap|ABATIC” AND “DYNAMIC” EXCHANGE
the real part of the approximate forms introduced above. CORRELATION POTENTIALS

In the case of weak correlatiofrig. 5, wy=1) all the
approximations reproducéapart for an almost constant  Let us focus first on the xc fiell,(r,t). There has been
shift), the general trend. In the strong correlation od&g. 6,  considerable effort, in recent years, aimed at the construction
0o~0.02) the agreemertagain apart from a shiftis less of a fully dynamic xc potential, which, unlike the ALDA
good and particularly poor for the OEP. A more detailedpotential, should depend on the density at all previous times,
ana|y5is can be done Considering the xc f|Elg (insets of i.e., have a memory. In order to assess the importance of
Figs. 5 and § that disregards irrelevant constant shifts. Inthese “memory effects,” we shall now separdigy(r,t) in
the case of weak correlatiofinsets of Fig. 5,w,=1) the an “adiabatic’ part Ef}g(r,t) containing the adiabatic evo-
ALDA reproduces, except for small, the general trend, Iution of the static exactE,.(r) and a “dynamical one
though underestimating the peak of the potential. In thégg’(r,t), peculiar of the time-dependent problem. Compar-
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ing Egs.(44) and(46), and making use of E¢45), it is easy 1

to identify —V[V2In p(r,0/4+ |V In p(r 0)|%8] — En(r,t) as vexdr 1) = 5[ w§+ wi(t)]r (67)
adiabatic terms, while- V[ —|Vf(r,t)|2/2— of(r,t)/ot] are

peculiar to the time-dependent case. Howewgs,(r,t) = with wf(t) defined by Eq.(32), is a “breathing motion,”

—Vuexr,t) is not an explicit functional of the time- i.e., it can be described as a periodic transformation with a
dependent density and must be treated more carefully. Thength scale
adiabatic part ofE.,(r,t) is defined as the electric field
Eggt(r,t) which, when applied to the physical interacting
system, would yield the exact densjtyr,t) while the sys-
tem remains in the instantaneous ground state.

It is then possible to define thedynamical part of the Then we can calculate explicitly all the quantities appear-
external field as what remains after subtracting the adiabatitng in Eq.(66). The velocity field is given by
part:

-1/2

d
IO M| =X (68)

It). [d -
E(r )= Eex(r.) — EZ(TD). (61 VD= T g Xl (69
Now we can separate, in the casg of the two electron prob- &
lem, E,(r,t) in an adiabatic[E3S(r,t)] and dynamical _1 = A
[EY(r,t)] part, Exo(r,t) = E2%(r t) + ES(r t), where v(r.t [dtzlnux(t)']}r (70
of(r,t) 1 2 2
E%um=—Vﬁ- ——wnnmﬂ—Ezun, Y NN IS ;
(62 71
Eig(r,t)z v 5( [EV In[p(r.H]+ + §V2{|n[p(l’,t)]}” the external field is given by
Eext,l(ryt)z _wi(t)r! (72)

—En(r,t)—E3%(r,1). (63) o o
and the “adiabatic” external field is given by
From the definition ofg,, it is straightforward to recover

the corresponding expressions for the potentigl. ad d 2

In the linear regime, using the linearized express®f Eexa(N)=—| g7 ¢ 1. (73
we obtain:
This is also the exacE";‘le(r,t) corresponding to the nonin-
teracting harmonic oscillator problem.

We can now prove thaEgg’vl(r,t)=O in this approxima-

tion. Using in Eq. (71) |X(t)|=X(t)exg—ig(t)], X=

2 P1

1
Exea(r.)=-v| 7V oo

1 pP1 ad
+ ZV'npOV % - Eextl(r ,t)

~EBnart), (64) —w(t)?X and dropping the terms of second order\in we
get:
Bl (1, 1) =Eyoa(r,) —E3S4(r,1) (65
. d
. —| 2, 2
—vy— Eex;l(ryt)+EZgg1(ryt), (66) v(r,t)= —w(t)*+ dtd’(t) r (74)

where we have used the fact thaf(r,t)=v(r,t) and ne-

glected terms of order?(r,t). (ro=vnd :Eextl(r't)_Ethl(r't) (75
The difficulty in the calculation oiEggt(r,t) is that in  that substituted in Eq66) yields Eggl(r,t)=0.

general its form is unknown and leads to a nonseparable, ’

two-electron Schidinger equation. In our case it is possible 2. “Strong” correlation limit

to calculate analytically Eggt(r,t) and its counterpart

EY(r,t) in the limit of extremely weak and extremely _

strong correlation3 but for a genleral'set of parameters it Wi”considering the equation of motion of the separatignbe-

be necessary to find an a%prommz;'\tlonlﬁgﬁt(r,t). _ tween two classical point chargésee Appendix € Under
We will now show that=gY ,(r,t) in this system vanishes ihe influence of the external potentialy, ;= w,(t)?r242 the

exactly in both the weak and strong correlation limits, and itgqyjjibrium separatiom,, oscillates according to the classi-
is likely to be very small in the intermediate cases. cal equation of motion

The equilibrium density reduces to &-shell pg
2/(7rg) 8(r —ro/2) and we can treat the system classically

A. Calculation of ESY ,(r,t) F15= Eexea(t) — 303(r 1o 1), (76)

1. "Weak” correlation limit With Egyi1(t) = — 03(t)ro andry is the equilibrium separa-
In this regime the response of our system to the externdion in the absence of the external figlde use the linear-

potential response approximatignWe can now define the “adiabatic
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external” field as the one that produces the same deviatiogeparation oE,(r,t) into an “adiabatic” and a purely “dy-
from equilibrium asEe,,(t), under static conditionsr(, ~ namical” part. The somewhat counterintuitive result is that,

=0). That means that in the case of a time-dependent harmonic external potential,
g ) the dynamical part o, is zero in the limits of weak and
Eexe1(t) =3wglr1a(t) —ro], (77 strong correlation and almost negligible in between. This

happens at frequencies well above the first excitation thresh-
old, where the density response is far from adiabatic. In the
weak correlation regime, this result depends crucially on the
v =E H—E24 (1), 78 form of the wave function in a_parabollc potentlgl. Therefore,

1= Eexa(® = Eeal) (78) we do not expect the conclusion to be generalizable to other

wherev, is the exact velocity field in this limit. This implies potentials. In the strong correlation regime, however, the re-

wherer 15(t) is the solution of Eq(76). From this we can
deduce that

that Egitl(t)=0 in this limit. duction of the dynamics to harmonic oscillations about a
classical equilibrium configuration appears to be a feature of
3. Nonextreme cases several electronic systems. It is this feature that leads to the
In this case the problem is to find a good approximatiorvanishing ofE5¢(r.t) in this regime. o N
for Eadt(r t). In the case we are considerirp,(r,t)= These results throw some light on the surprising ability of
ext\'1%/- '

— (t)?r so in order to have a simple and separable form forthe.ALDA to give good results even outs_ide its natura! do-
E2d(r 1), we can choose: main of validity (low-frequency regime in a system in
ext\' »*/>» . . . . A .
which the nonadiabatic corrections are small, a static func-

E3d(r,t)~—a(t)r, (79  tional of the density(such as the LDA xc potentialwhich
works well in the static regime, is expected to give a reason-
EY(r.t)~—[w(t)%r—a(t)r], (80)  able time-dependent potential upon replacement of the static
density with the time-dependent one.
and determinex by optimizing the density. The recently introduced VUC approximation, contains a
For the “low-correlation” parametetw,=1 the approxi- “dynamical” correction to ALDA [see Eq(60)] and, in the

mation E2%(r,t)=—(¢)?r gives very good results and light of the “exact” behavior ofES(r,t) just underlined, it
po(r;t) is indistinguishable fronp(r,t) within the numerical is interesting to notice that the “dynamical” part of VUC is,
error. The results for the “high-correlation” parametey  for this system, small, becoming almost negligible for strong
~0.02 are less good. They can be improved usir(g)  correlation.

:w3[1+8 cost)] and tuning the parameter. In every In summary, we have found t_hat, for this pz_:lrticular sys-
case, also in these intermediate ca&Xr,t)~0 within the ~ tém, the “dynamical” part ofE,. is almost negligible, and
numerical error. the ALDA, GK, and VUC approximations work reasonably

We conclude that for this particular system the dynamicalvell at all coupling strengthgalthough the VUC underesti-
part of E,.(r,t) is almost negligible so that the dynamical MatesEy(r,t) for weak correlation The OEP, as expected,
part of v, is basically an irrelevant constant. However, we S reasonable only for weak correlation. The main discrepan-
caution that this is at least partly a special feature of thesies are found to occur at smalland at larger (except for
harmonic system studied hefgee discussion in the follow- the OEP that has the exact asymptotic behavibhe ques-

ing section and should not be uncritically generalized to tion of whether the_se results are generalizable to more com-
other systems. plex systems remains open.
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density is slowly varying on the scale of the local average APPENDIX A

interelectron distance. This condition is certainly not satis-

fied by our model system—not in the weak correlation re- Making the change of variablR=2R, Eq. (7) can be
gime, in which the length scale of density variation coincidesewritten as

with the average interelectron distance, and much less in the

strong correlation regime, in which the latter greatly exceeds

the former. In this light, the fact that the ALDA and GK ~-Vi+ sz(t)Rz ‘I’cm(R,t)Zii‘I’CM(R,t)-
produce xc fields reasonably close to thexact ones, al- 4 at

though qualitatively incorrect at large distance from the cen- (A1)
ter, should be regarded as an unexpected success of these

approximations. Separating angular and radial coordinates as in(Ef, we

Another surprising result of our study comes from theobtain the radial equation:
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# 19 1, R2 m? = \/ nl deb (m+1)
—E—ﬁﬁ‘FZw (t) +§ Xnm(R1) A(0)= —Zm(n+m)! at | =0 (A13)
—i i (R.1) (A2) Finally, inserting all the expressions for the coefficients in
— g Xnmtt Eg. (A3), after some algebra we get:
Inserting into Eq(A2) the guess \/T dep| (m+ D2
Rt;X)=\/———| =~
Xnm(RD=A(1)RTexg B()R’ILITC(H)R?]  (A3) X ) 2™(n+ m)!( dt)
(a generalization of the corresponding static solytiome xexpli(2n+m+1)[ $(0) — (1) |}R™
obtain the following equations for the time-dependent coef- , )
ficients: X ex _d_¢+i dini| R Lm dé R
dt dt /4| "\dt 2)°
e 2_
iC+8BC+4C?=0, (A4) (A14)
A
|K+4B+4m B—-4nC=0, (A5) APPENDIX B
The solution of static radial equation for the RM channel
) 1 can be written as:
iB+4B%— sz(t)=0. (AB)
. u(p)
With the ansatB = (i/4)(X/X), Eq. (A6) becomes Rni(p)=—F—, (BY)
p
X=—w?(t)X, A7 \ —
(t) (A7) Jor
the classical equation of motion for a harmonic oscillator.
The solutionX(t) can be written as with
X()=|X(1)]|e'?V=Xpu+iX5. (A8) ”
n u(p)=e"120°ps> a,p", (B2)
Sincexy m(R,t) must not diverge aB— o, we must impose v=0
that the real part oB(t) =By +iB be negative. UsingA8),
B(t) can be written as p=vo,r, (B3)
1d¢ i din|X] ©
= — — — —_—— 0
t 4dt T3 dt (A9) =7 (B4)
W i din|X| 1
_—4|X|2+Z TE (AlO) S:§+ \/|— (85)

whereW= >'(3Xm—)'(gqxfj is a constant, being the Wronskian The coefficients of the sum in E¢B2) are related by
of two solutions of Eq(A7). In order to have a normalizable
wave function not identically zero, we have then to impose

1 a
that W>0 or equivalently thatl¢/dt>0. s(s+1)—1+ 7 a,=—, (B6)
Requiring thatC € R, from the real part of EqA4) and \/;r
from Eq. (A10), we get
1 av—l
C(t)=(1/2)(WI|X|?), (A11) (v+s)(v+s—1)— 1+ ~|a,— —
47 o,
which also satisfies the imaginary part of E44). Now we
can solve Eq(A5) from which, integrating, we get: i 2—1—2(1/—24—5) a, ,=0 (B7)
W, Ve !
X(t)
A(t)=A(0)-exp —(m+ 1)|HW where g, is the part of the energy coming from the RM

channel andy, is fixed by the normalization condition. Im-
. posing the conditiona,,_,#0, a,=0, a,.1=0,the sum
—i@n+m+D[d(t)-(0)]1.  (Al2)  jn Eq.(B2) can be made finite and the coefficieatscalcu-
lated. From these conditions we also obtain an expression for
A(0) is determined by the normalization condition the energye,=w,(2n+2s—1) and an expressioriless
Tolxam(RD|?’RdAR=1, straightforwardl for w, .
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In our calculations we have truncated the sum in B®)
at n=2 obtainingwy=1 (weak correlation cageand atn
=5 obtaining wo= (25— 3+/33)/328~0.02 (strong correla-
tion case.

APPENDIX C

In the limit of strong correlatiofEq. (30)] and linear-

response regime the potential energy can be expanded up to
the second order about the classical solution and we can also

approximate the momentumwith the radial componen,

=—| (a/ar)? since, in this limit, the dynamic of the problem

is basically confined in the direction. The Hamiltonian of
the relative motion problem in E¢8) can then be approxi-

mated as:
p? 2
; ~
Heff(t):ﬂ+sz(r—ro)z—MEexm(t)(r—ro),
(Cy
where u=1/2 is the reduced massy=(1/uw3)'? is the

EXACT EXCHANGE-CORRELATION POTENTIAL FOR A ...

7887

(C4

and the problem reduces to a one-dimensional harmonic os-
cillator and can be solved exactly in a way similar to the one
shown for the two-dimensional harmonic oscillator in Ap-
pendix A. The general solution takes the form:

1 1/2 d'(?)
2! JE) (E

1/4 ,
e(i/2)(X/X)y2

d~ 1/2
) o

whereH ,(x) are the Hermite polynomials af¢{t) is acom-
plex solution of the classical equation of motion

W(y,t)=

« @l (12+M[$(0) - (D] Y

n

X=—w2(t)X, (C6)
X(t)=|X(t)|e", (C7)

with a phaseg(t) satisfying the conditiord¢g/dt>0. The

classical separation between electrons in the linear regimeo|ution of the original problem EGC1) with n=0 is, there-

®?(t) =3wi+ wi(t) andEy(t) = — wi(t)r, can be viewed
as an “external force.” If we define;=r —rg, the deviation

from the classical equilibrium position, we can use the
change of variable ;=y—Xy(t) so that the Hamiltonian

becomes"
2
Pro M~y s~ v
HO=5, T 29y~ ROy = mXo(V)y = #Eexs(DY,

(€2

fore,

da) 1/4 _
W(r,t)= —( —) e(i/2)[$(0) = ¢(1)] g=iuxg(t)(r =ro)
JEVANT:

x e(ilzm(i/i)[r—r0+xo<t)]2

t ~ 1 .
X ex if dt’ ﬁwzxg——,uxé : (C8)
A2 2

where we have dropped the irrelevant terms depending on \ye stress that in the regime of high correlatibfry—0,

the time alone. If we impose that

Xo= — 0*Xg— Eexta(t), (3

we get

where A = w3 the width of the Gaussian entering the solu-

tion (C8), the wave function is concentrated aroundthat
justifies the approximatiofC1)] and tends to & function in
the extreme limit.
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