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Exact exchange-correlation potential for a time-dependent two-electron system

Irene D’Amico and Giovanni Vignale
Department of Physics, University of Missouri, Columbia, Missouri 65211

~Received 9 September 1998!

We obtain a solution of the time-dependent Schro¨dinger equation for a two-electron system confined to a
plane by an isotropic parabolic potential whose curvature is periodically modulated in time. From this solution
we compute the‘‘exact’’ time-dependent exchange correlation potentialvxc , which enters the Kohn-Sham
equation of time-dependent density functional theory. Our ‘‘exact’’ result provides a benchmark against which
various approximate forms forvxc can be compared. Finally,vxc is separated in an adiabatic and a pure
dynamical part and it is shown that, for the particular system studied, the dynamical part is negligible.
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I. INTRODUCTION

The time-dependent density-functional theory1–3 ~TDFT!
maps an interacting time-dependentN-electron system, de
scribed by a Hamiltonian of the form

H5(
i

pi
2

2m
1(

i , j
V~r i2r j !1(

i
vext~r i ,t !, ~1!

with pi52 i\¹ i the momentum operator of the single pa
ticle, V(r i2r j ) the two-particle interaction potential@V(r i
2r j )5e2/ur i2r j u for Coulomb interaction# and vext(r i ,t)
the time-dependent external potential, to a noninterac
time-dependentN-electron system having the same dens
r(r ,t). In this formalism the new Hamiltonian, also know
as the ‘‘Kohn-Sham’’~KS! Hamiltonian, can be written as

HKS5(
i

hKS~r i ,pi ,t !, ~2!

where

hKS~r i ,pi ,t !5
pi

2

2m
1vext~r i ,t !1vH~r i ,t !

1vxc~@r~r ,t !#;r i ,t ! ~3!

is the effective one-particle Hamiltonian. Apart fro
the external @vext(r i ,t)# and the Hartree @vH(r i ,t)
5*dr 8r(r 8,t)/ur i2r 8u# part, the potential contains a
‘‘exchange-correlation’’~xc! term †vxc(@r(r ,t)#;r i ,t)‡ that
is an unknownfunctional of the density. In the TDFT for
malism the wave function of the effective noninteracting s
tem is a Slater determinant ofN one-particle orbitalsw i(r ,t),
which satisfies the equation:

hKS~r ,p,t !w i~r ,t !5 i\
]

]t
w i~r ,t !. ~4!

The particle density can then be written as:

r~r ,t !5(
i

uw i~r ,t !u2. ~5!
PRB 590163-1829/99/59~12!/7876~12!/$15.00
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As in the time-independent DFT, the main problem
TDFT is to find a good approximation forvxc„@r(r ,t)#;r ,t….
Among the most used approximations we mention the a
batic local-density approximation~ALDA !,4 which is a direct
extension of the static LDA to the time-dependent proble
and the optimized effective potential approximation5 ~OEP!
in which vxc„@r(r ,t)#;r ,t… is written as a functional of the
single-particle orbitals and~usually! only the exchange
part is considered. Both approximations determ
vxc„@r(r ,t)#;r ,t… at time t as a function of the density~or
single-particle orbitals! at thesametime. Attempts to include
the ‘‘memory’’ of the xc potential, i.e., its dependence on t
density at earlier times, have been hampered by the fact
such a retarded potential is a severely nonlocal functiona
the density, i.e., it does not possess a gradient expansio
terms of the density.6,7 For example an early attempt b
Gross and Kohn8 ~GK! to incorporate retardation within th
frame of the LDA was found to be plagued by inconsiste
cies, such as the failure to satisfy the ‘‘harmonic poten
theorem’’9 and other exact symmetries.6,7 Only very
recently,6,7,10 a consistent local approximation including r
tardation has been formulated within the frame of t
current-density functional theory~CDFT!, in which the cur-
rent density, rather than the density, is used as the b
variable.

In practice, it is not always easy to decide which of t
above approximations works best in a concrete applicat
A comparative study of the performance of different appro
mations in a simple and well-controlled situation would
very useful. As a first step in this direction, we present,
this paper, an ‘‘exact’’ ~in the sense of highly numerically
accurate! calculation of the xc potential for what is probab
the simplest nontrivial model of interacting electrons in
time-dependent external potential. This model consists
two electrons, in two dimensions, subjected to a parab
potential, whose curvature~which is always positive! is pe-
riodically modulated in time. A concrete realization of th
model could be two electrons in a quantum dot11,12 with a
time-dependent parabolic confinement potential. We s
show that~i! the time-dependent Schro¨dinger equation for
this system is exactly solvable by a combination of nume
cal and analytical methods and~ii ! the knowledge of the
exact solution can be used to compute the exact xc
7876 ©1999 The American Physical Society
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tential. Our solution forvxc„@r(r ,t)#;r ,t… turns out to be the
time-dependent generalization of similar calculations
cently performed in the static case.13 The value of these re
sults lies in the fact that they provide a rigorous benchma
against which the merits or demerits of various approxim
theories can be assessed.

This paper is organized as follows. In Sec. II we discu
the model and the ‘‘exact’’ solution of the corresponding
time-dependent Schro¨dinger equation. In Sec. III we con
struct theexact xc potential and fieldExc„@r(r ,t)#;r ,t…[
2¹vxc„@r(r ,t)#;r ,t… both in the TDFT and in the time
dependent CDFT, and we discuss the difference between
two forms. We also compare our result with the known sta
limit.13 In Sec. IV, we draw a comparison between our ‘‘ex-
act’’ results and the ALDA, OEP, and GK approximations
well as the new approximation presented by Vignale, U
rich, and Conti10 ~VUC!. In Sec. V we introduce a separa
tion between the adiabatic and the truly dynamic part ofExc .
We conclude with a discussion and summary in Sec. VI.

II. THE MODEL

We consider two interacting electrons of effective ma
m* in a two-dimensional~2D! harmonic potential with fre-
quency v(t) periodic in time. The background dielectr
constant ise. The corresponding time-dependent Sch¨-
dinger equation in atomic units (\5e/Ae5m* 51) is:

F2
1

2
~¹1

21¹2
2!1

1

2
v2~ t !~r 1

21r 2
2!1

1

r 12
GC~r 1,r 2!

5 i
]

]t
C~r 1,r 2!, ~6!

wherer 1 and r 2 are the electronic coordinates andr 12 is the
distance between the electrons. Introducing the cente
mass~CM! and relative motion~RM! coordinatesR5(r 1
1r 2)/2 and r5r 12r 2, Eq. ~6! decouples in the two equa
tions:

S 2
1

4
¹R

2 1v2~ t !R 2DCCM~R,t !5 i
]

]t
CCM~R,t ! ~7!

S 2¹ r
21

1

4
v2~ t !r 21

1

r DCRM~r ,t !5 i
]

]t
CRM~r ,t !, ~8!

where

C~r 1,r 2!5CCM~R,t !CRM~r ,t ! ~9!

is the orbital part of the wave function. The spin state can
either a singlet or a triplet~we assume 3D isotropy for th
spin S). The RM wave function must be even or odd und
inversionr→2r , depending on whetherS50 or S51, re-
spectively.

For simplicity of notation, we are using ‘‘r ’’ to indicate
the RM coordinate going back to ‘‘r12’’ only where needed
to avoid confusion.
-
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s
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-
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A. Solution in the CM channel

1. General analytical solution

The problem of a quantum harmonic oscillator with
time-dependent frequency has been studied by sev
authors.14 Equation~7! is analytically solvable for a genera
~periodic or not! v(t). The angular momentum is a consta
of motion and this allows the separation of angular and ra
coordinates. So we obtain the radial equation:

S 2
1

4

]2

]R 2
2

1

4

1

R
]

]R1v2~ t !R 21
1

4

m2

R 2D xn,m~R,t !

5 i
]

]t
xn,m~R,t !, ~10!

where

CCM~R,t !5xn,m~R,t !Qm~q!, ~11!

with

Qm~q!5
1

A2p
e2 imq, ~12!

wherem is a positive integer denoting the~constant! angular
momentum andq is the angular coordinate of the center
mass.

The general solution of Eq.~10! is given by:

xn,m~R,t !5A n!

2m~n1m!!
S df

dt D ~m11!/2

exp$ i ~2n1m11!

3@f~0!2f~ t !#%2mRm

3expF S 2
df

dt
1 i

d lnuXu
dt DR 2GLn

mS df

dt
2R 2D ,

~13!

whereX(t) is acomplexsolution of the classical equation o
motion

Ẍ~ t !52v2~ t !X~ t !, ~14!

X~ t !5uX~ t !ueif~ t !, ~15!

with a phasef(t) satisfying the condition

df

dt
.0. ~16!

The details of the derivation of Eq.~13! are given in Appen-
dix A, where it is also shown that such a solution can alwa
be constructed starting from two linearly independent r
solutions of Eq.~14!.

We stress that Eqs.~12! and ~13! provide a complete se
of solutions of Eq.~7! for whateverv(t), provided that the
condition ~16! is satisfied.

In the special case of an initial value problem, i.e., if t
wave function is specified att50 as

CCM~R,0!5(
n,m

cn,mxn,m~R,0!Qm~q!, ~17!
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with xn,m(R,0)Qm(q) the eigenfunctions ofH(0), thesub-
sequent time evolution is given by

CCM~R,t !5(
n,m

cn,mxn,m~R,t !Qm~q!, ~18!

with the initial condition forX(t)

X~0!5
1

Av~0!
, ~19!

Ẋ~0!5 iAv~0!, ~20!

wherev(0) is the frequency of the harmonic oscillator at t
initial time.

2. Floquet ansatz

If the Hamiltonian is periodic in time~in this case if
v(t1T)5v(t), whereT is the period!, we can look for a
basis set of solutions satisfying the Floquet ansatz:15–17

C~ t1T!5e2 i«TC~ t !, ~21!

where « ~real for bound states! are calledQuasi-energies
~QE!. The QE are defined moduloV52p/T. This particular
basis set has properties that are similar to those of the ei
states of a static Hamiltonian.15

In our calculations, we have chosen forv2(t) the form:

v2~ t !5v0
2@11l cos~Vt !#. ~22!

To construct Floquet-type solutions of Eq.~10! let us first
of all define the Floquet solutions of the classical equation
motion ~14! ~Refs. 18 and 19! as the solutionsXF(t) having
the property

XF~ t1T!5eiKXF~ t !. ~23!

There exist two solutions of this kind18,19 corresponding to
two eigenvalueseiK 1,2 ~with K152K2) either complex con-
jugate and lying on the unit circle of the complex plane
real and inverse to each other. In the former case the s
tions XF(t) remain bounded in time; in the latter, one
them increases exponentially fort→`, a phenomenon
known asparametric resonance. The actual value ofK as a
function ofl andV can be calculated from Eq.~14!. In this
way thel,V plane can be separated in classically stable
unstable regions. The border of the regions of parame
resonance are then defined by the condition:eiK561.

It is evident, from the form of the general solution~13!,
that Floquet solutions with real QE exist within the regio
of classical stability. In these regions the two classical F
quet solutions are complex conjugate. This means that on
the two will always satisfy the condition~16! ~see also the
equivalent condition in Appendix A!. If we choose this par-
ticular solution as the one that determines the time dep
dence ofxn,m(R,t) in Eq. ~13!, then the$xn,m(R,t)% form a
basis of Floquet wave functions with QE:

«n,m5
K

T
~2n1m11!. ~24!

To derive Eq.~24! we made use of the relation:
n-

f

r
lu-

d
ic

-
of

n-

iK 5E
0

TẊ

X
dt5E

0

T d

dt
lnuXudt1 i E

0

Tdf

dt
dt5 i @f~T!2f~0!#.

~25!

The last equality holds because*0
Td lnuXu/dt dt50 since

lnuX(t)u is periodic. At the border of the classical regions
instability eiK561, the Floquet solutionsxn,m(R,t)→0 and
the set of QE$«n,m% degenerates to$0% if eiK51 or to
$0,p/T% if eiK521.

In the remaining regions of classical instability solutio
of the Floquet type cannot be constructed. These regions
centered around the valuesV52v0 /k, k50,1,2 . . . ~with
v0 the frequency of the unperturbed harmon
oscillator!,18,19 so that the valueV50 is an accumulation
point for the sequence. This means that ifl.0, it is not
possible to perform the limitV→0 without entering regions
of parametric resonance and so it is not possible to follow
evolution of a Floquet state from a finiteV down to 0. We
remark that the occurrence of classical parametric resona
is related to a failure of the conventional Floquet theore
which ensures the existence of a complete set of Floq
states. The reason is that our harmonic oscillator poten
being not bounded, gives rise to a strictly hermitian Ham
tonian and allows only Floquet states with real QE: e
dently, such quasiperiodic states cannot describe the mo
of an electron to larger and larger distance from the cen
that the resonance process would imply. Realistic boun
potentials avoid this problem by allowing the possibility
complex QE in which the electron can escape to infin
~ionization!.

B. Solution in the RM channel

As we did for the CM channel, we separate the angu
and radial coordinates in Eq.~8! and we obtain the radia
equation:

S 2
]2

]r 2
2

1

r

]

]r
1

1

4
v2~ t !r 21

1

r
1

l 2

r 2D cn,l~r ,t !

5 i
]

]t
cn,l~r ,t !, ~26!

where

CRM~r ,t !5cn,l~r ,t !Q l~q!, ~27!

with

Q l~q!5
1

A2p
e2 i l q, ~28!

and l a positive integer, even forS50 and odd forS51.
Hereq is the angular coordinate for the RM channel. Equ
tion ~26! cannot be solved analytically except in the follow
ing special cases.

~1! Time independent case.The static limit (l50) has been
well analyzed in three-dimension13 and for certain values o
the frequencyv0 of the unperturbed harmonic oscillator it
possible to have a completely analytical solution also for
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RM channel~see Ref. 20!. Similarly, it is possible to con-
struct an analytical solution in the two-dimensional case~see
appendix B!.

~2! Weak correlation limit.We define the weak correla
tion limit as the regime in which the Coulomb interaction
negligible compared to the harmonic confinement poten
This means that

l

a
→0, ~29!

where l[A\/2m* v0 is the confinement length due to th
harmonic potential anda[\2e/m* e2 is the effective Bohr
radius. In our units (\5e/Ae5m* 51) this is equivalent to
imposing v0→`. In this regime the coulombic term be
comes negligible and the RM problem becomes analytic
solvable~see part A of this section!.

~3! Strong correlation limit in the linear response ap
proximation with respect tol. In this limit the Coulomb
interaction dominates the harmonic confinement poten
This means

l

a
→`, ~30!

~so in our unitsv0→0) and the two electrons can be show
to perform small oscillations about the classical equilibriu
position determined by the competition between electrost
repulsion and harmonic confinement. Expanding the po
tial energy to the second order in the displacement from
classical equilibrium distancer 0@ l and neglecting correc
tions of orderl /r 0 to the kinetic energy one obtains the e
fective harmonic Hamiltonian

He f f~ t !5
pr

2

2m
1

m

2
ṽ2~ t !~r 2r 0!22mEext,1~ t !~r 2r 0!,

~31!

where pr
252]2/]r 2, m51/2 is the reduced mass,ṽ2(t)

53v0
21v1

2(t), v1
2(t) is defined as

v1
2~ t ![v0

2l cos~Vt !, ~32!

and Eext,1(t)52v1
2(t)r 0 can be viewed as an ‘‘externa

force.’’ Apart from time-dependent phase factors~see Ap-
pendix C for these factors and for details of the derivatio!
the solution, forn5 l 50, takes the form:

C~r ,t !5
1

p1/4S df̃

dt
D 1/4

e2 im ẋ0~ t !~r 2r 0!e~ i /2!m~X8 /X̃![ r 2r 01x0~ t !] 2

~33!

with X̃(t) the solution of

Ẍ̃52ṽ2~ t !X̃~ t !, ~34!

f̃(t) its phase such thatdf̃/dt.0 andx0(t) the solution of

ẍ052Eext,1~ t !2ṽ2~ t !x0~ t !. ~35!

If we insert in Eq.~33! for x0(t) its linear response approx
mation expression
l.

ly

l.

ic
n-
e

x0~ t !52
Eext,1~ t !

3v0
22V2

~36!

and for X̃(t) the classical Floquet solution of Eq.~34! with
df̃/dt.0, we obtain a Floquet solution for the RM problem

In the general case Eq.~26! must be solved numerically
and, to constructvxc(r ,t) or Exc(r ,t), the most natural
choice is to consider the dynamical equivalent of the grou
state, that is, for the RM channel, the ‘‘lowest’’ Floquet sta
CRM

0 (r ,t)5c0,0(r ,t)/A2p. We define this as the state th
evolves continuously from the ground state of the sta
Hamiltonian as the amplitudel of the time-dependent per
turbation grows from zero. From now on we only consid
l 50 ~and correspondinglym50 for the CM channel!.

In order to calculate this Floquet state we use its prope
of being an eigenstate of the one-period time-evolution
erator Û(T) @C(r ,t1T)5Û(T)C(r ,t)# with eigenvalue
e2 i«T @see Eq.~21!#. The idea is to calculate the matri
$U(T) i j % in a suitable basis, diagonalize it and find its ‘‘low
est’’ eigenstate—the ‘‘lowest’’ Floquet state. The basis w
choose to calculate$U(T) i j % is the set of eigenstates of
two-dimensional harmonic oscillator with angular mome
tum equal to zero $Ri(r ,0)%. For a general instan
t, $U(t) i j % are defined by the equation:

Rj~r ,t !5(
i 51

M

U~ t ! i j Ri~r ,0!, ~37!

where the sum has been truncated for practical purpose
our calculationM560—a value that ensures a very goo
convergence of the lowest QE’s. Inserting for eachRj (r ,t)
the expression~37! into Eq.~26!, we find forU(t) i j a system
of M first-order differential equations. Integrating this syste
over one period,for each Rj (r ,t), we obtain$U(T) i j %. Since
the QE« j are defined moduloV,16 it is not possible to es-
tablish from the value of the eigenvalues ofU(T) the ‘‘low-
est’’ one. To identify it we have instead used the prope
that for l→0, « j→« j

0 , where« j
0 is an eigenvalue of the

static (l50) Hamiltonian.15,17 In practice we have followed
the evolution of the ground-state energy«0

0 for increasing
l ’s.

III. CONSTRUCTION AND CALCULATION
OF THE ‘‘EXACT’’ EXCHANGE-CORRELATION

POTENTIAL

A. Construction in TDFT

If we consider two electrons in a singlet state, the K
equations reduce to a single equation for the doubly occup
orbital w(r ,t)

H 2
1

2
¹21vext~r ,t !1vH~r ,t !1vxc„@r~r ,t !#;r ,t…J w~r ,t !

5 i
]

]t
w~r ,t !. ~38!

The KS orbital can be written as

w~r ,t !5uw~r ,t !uei f ~r ,t !, ~39!
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and its modulus is related to the density by the equation

r~r ,t !52uw~r ,t !u2, ~40!

while its phase is related to the KS velocityvKS(r ,t) by

¹ f ~r ,t ![vKS~r ,t !. ~41!

If we insert expression~39! in Eq. ~38! and we impose tha
vxc„@r(r ,t)#;r ,t… is real, we obtain two equations, one fro
the real part of Eq.~38!:

1

4
¹2 ln r~r ,t !1

1

8
u¹ ln r~r ,t !u22vext~r ,t !2vH~r ,t !

2vxc„@r~r ,t !#;r ,t…2
1

2
u¹ f ~r ,t !u22

]

]t
f ~r ,t !50,

~42!

and the second from its imaginary part

¹•¹ f ~r ,t !1¹ f ~r ,t !•¹ ln r~r ,t !1
]

]t
ln r~r ,t !50.

~43!

Equation~42! can be solved forvxc(r ,t) ~for simplicity of
notation we have dropped the dependence of the xc pote
on the density! and we find the following explicit expression

vxc~r ,t !5
1

4
¹2 ln r~r ,t !1

1

8
u¹ ln r~r ,t !u22vext~r ,t !

2vH~r ,t !2
1

2
u¹ f ~r ,t !u22

]

]t
f ~r ,t !. ~44!

The corresponding expression for the xc electric field is

Exc~r ,t ![2¹vxc~r ,t !. ~45!

The last two terms of Eq.~44! are peculiar of the time-
dependent problem while the first four correspond to
static expression13 for vxc ,

vxc
static~r !5

1

4
¹2 ln r~r !1

1

8
u¹ ln r~r !u22vext~r !2vH~r !.

~46!

Equation~43! is a first-order partial differential equation fo
¹ f and is equivalent to the continuity equation for the no
interacting KS system. It shows thatvKS(r ,t)5¹ f (r ,t) is in
general a nontrivial functional of the density. We stress t
vKS(r ,t) is in generalnot the same as the exact velocity fiel
only the longitudinal part of the KS current must coinci
with the longitudinal part of the physical current due to t
continuity equation.

B. Construction in time-dependent CDFT

The time-dependent CDFT differs from the TDFT in th
not only the density but also the current density calcula
from the KS single-particle orbitals is exact.

In order to accomplish this, one introduces an xc vec
potential Axc in the Kohn-Sham equation.6,7 The KS
Hamiltonian7 is now:
ial

e

-

t

d

r

HKS~ t !5(
i

H 1

2
@pi1Axc~r i,t !#

21vH~r i,t !1vext~r i,t !J ,

~47!

which yieldsboth the correct density and current. In the ca
of two electrons in a singlet state, we get, for the occup
orbital w(r ,t), the time-dependent Schro¨dinger equation:

S H 1

2
@p1Axc~r ,t !#21vH~r ,t !1vext~r ,t !J Dw~r ,t !

5 i
]

]t
w~r ,t !, ~48!

and we can now follow the same procedure used in TDFT
find an explicit expression forExc(r ,t). We obtain:

Exc~r ,t !52Ȧxc~r ,t ! ~49!

52¹F1

4
¹2 ln r~r ,t !1

1

8
u¹ ln r~r ,t !u2G

2Eext~r ,t !2EH~r ,t !1¹S 1

2
v2D1 v̇, ~50!

wherev(r ,t) is the exact velocity of theinteractingsystem,
v(r ,t)5¹ f (r ,t)1A(r ,t), EH52¹vH andEext52¹vext .
The expression for the vector potentialAxc(r ,t) follows im-
mediately from Eq.~50! and from the definition Eq.~49!.
From the imaginary part of Eq.~48! ~or equivalently from
the continuity equation! we get the first-order partial
differential equation

¹•v~r ,t !1v~r ,t !•¹ ln r~r ,t !1
]

]t
ln r~r ,t !50. ~51!

The advantage of this formulation is that it express
Exc(r ,t) @andAxc(r ,t)# as a function of the physical quant
ties v(r ,t) andr(r ,t).

C. Circularly symmetric states

If the time-dependent state is circularly symmetric, as
the case we are studying, then the current is purely rad
therefore purely longitudinal, and the two expressions~45!
and ~50! coincide @that is v(r ,t)[vKS(r ,t)#. Thus, in this
case, there is no difference between the time-dependent
and CDFT. Equation~43! can be easily integrated yielding

]

]r
f ~r ,t !52

1

rr~r ,t !E0

r ]r~r 8,t !

]t
r 8dr8. ~52!

D. Linear response

In the limit of small external time-dependent perturbati
@l→0 in Eq.~22!#, we expand all the quantities to first orde
in l, i.e., vext5vext,01vext,1 , vH5vH,01vH,1 , vxc5vxc,0
1vxc,1 , and lnr5ln r01r1 /r0 where the subscripts ‘‘0’’ and
‘‘1’’ indicate, respectively, zero and first order with respe
to l. Then from Eq.~44! we obtain
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vxc,0~r !5
1

4
¹ ln r01

1

8
u¹ ln r0u22vext,0~r !2vH,0~r !,

~53!

and

vxc,1~r ,t !52
]

]t
f ~r ,t !1

1

4S ¹2
r1

r0
1¹ ln r0•¹

r1

r0
D

2vext,1~r ,t !2vH,1~r ,t !, ~54!

where we have neglected also the terms of orderv2(r ,t)
5u¹ f (r ,t)u2. Making use of the definition~45!, it is easy to
recover from Eqs.~53! and~54! the expressions forExc,0(r )
andExc,1(r ,t).

E. Calculation of the ‘‘exact’’ vxc„r ,t…

We have considered in detail two sets of the parame
v0, V, andl that appear in Eq.~22!, corresponding to high
and low correlation. The two sets are given in Table I. T
values ofv0 have been chosen such that it is possible
construct analytically the solution of the corresponding sta
Schrödinger equation~see Appendix B!. The values ofl and
V have been chosen so that the system is in the linea
sponse regime, but well above the regions of parame
resonance for the CM channel and above the first excita
energy of the system.

The ‘‘exact’’ time-dependent densities are plotted in Fig
1 and 2. For the weak correlation parameterv051 the den-
sity is centered at the origin as we can expect from the e
solution in the weak correlation limit~a Gaussian centered a
the origin, see Sec. II!. In the case of high correlation (v0
'0.02), on the other hand, the maximum of the density is
finite distance fromr 50 in agreement with the form that th
RM wave function assumes in the strong correlation lim
Eq. ~33! ~an annulus of average radiusr 0/2, with r 0 the clas-
sical equilibrium distance of the two electrons!: the increased
strength of the Coulomb repulsion in respect to the harmo
confinement pushes on average the two electrons far f
each other. In these plots the solid line represents the s
limit while each of the broken lines corresponds to the ti
dependentr(r ,t) at different times.

In the insets of Figs. 1 and 2 we plot the time-depend
velocity v(r ,t)5¹ f (r ,t), that is the other necessary ingr
dient to calculatevxc(r ,t) andExc(r ,t). As the plots show,
the motion is approximately a ‘‘breathing’’ motion: the ve
locity is zero at the origin while forrÞ0 it increases almos
linearly. The asymptotic behavior is linear inr with a cor-
rection in 1/r 2. In Fig. 3 (v051) and Fig. 4 (v0'0.02) we
finally plot the results for the potentialvxc(r ,t) @with the
conventionvxc(r ,t)→0 for r→`# and for the fieldExc(r ,t)
~in the insets!. The solid line represents the static limit whi
each of the broken lines corresponds tovxc(r ,t)@Exc(r ,t)# at
different times. We choose to plot alsoExc(r ,t), along with

TABLE I. Parameters used in our numerical calculations.

v0 V V/v0 l

high corr. (2523A33)/328'0.02 0.1 '4.2 0.1
low corr. 1 3.2 3.2 0.1
rs
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the more traditionalvxc(r ,t), since this is the meaningfu
physical quantity whose asymptotic behavior does not
pend on arbitrarily fixed time-dependent constants. As can
seen from the plots, as the correlation in the system
creases, the positive peak ofExc(r ,t) for small r increases
too. Equivalently the minimum ofvxc becomes more pro
nounced, as the correlation increases, and moves away
the origin. This is related to the enhancement of the stren
of the Coulomb repulsion that pushes the maximum of

FIG. 1. Lowest Floquet-state electronic density for the we
correlation case (v051). The solid line is the exact static resu
while each of the broken lines corresponds to different times. In
inset we show the corresponding velocity fieldv(r ,t). Each solid
line corresponds to different times.

FIG. 2. Same as Fig. 1 but for the strong correlation casev0

'0.02).
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density away from the origin.Exc(r ,t) can be viewed as a
force in the KS system which, where positive, contributes
drag the particles away from the origin.

Starting from the asymptotic form of the RM wav
function for r 12→`, that is, CRM}r 12

a @11(bR1 ibI)/

r #exp(2r12
2 ḟ/4), with a real, bI52@ ḃR1bRf̈/(2ḟ)#/ḟ

FIG. 3. ‘‘Exact’’ xc potential vxc(r ,t) for the weak correlation
case (v051). The solid line is the static limit, while each of th
broken lines corresponds tovxc(r ,t) at different times. Asymptoti-
cally vxc(r ,t)'21/r , as in the static case. For comparison t
static LDA result is also plotted. In the inset we show the cor
sponding xc fieldExc(r ,t).

FIG. 4. Same as Fig. 3 but for the strong correlation casev0

'0.02).
o

andbR defined byb̈R52v2(t)bR1ḟ, we get, with a little
algebra, the asymptotic form of the density@r(r ,t)}r 2a(1
12bR /r )exp(2r2ḟ)# and of the velocity @¹ f (r ,t)'
2r /2d(ln ḟ)/dt2bI /r 2#. From these behaviors, using E
~44!, we can derive the asymptotic behavior for the xc p
tential that results to be, aside from an irrelevant function
the time only, the same as in the static case:vxc'21/r for
r→`.

In Figs. 3 and 4 we also plot, for comparison, the loc
density approximation~LDA ! of the static vxc(r ) and
Exc(r ). As can be seen from the figures, in the region pl
ted, LDA differs from the ‘‘exact’’ result mainly for an ir-
relevant constant. In fact, if we considerExc ~insets!, LDA
behaves, in general, reasonably well except for smallr ~for
which in the weak correlation case has even the wrong s!
and for larger ~for which decreases exponentially!.

IV. COMPARISON WITH APPROXIMATE THEORIES

In this section we discuss the comparison between
‘‘ exact’’ result for vxc(r ,t) andExc(r ,t) and the results ob-
tained from the most used approximations, namely
ALDA, the OEP, the GK approximation, and the hydrod
namic approximation recently introduced by VUC. The e
pressions for the xc potential in these approximations are
follows.

ALDA: 4

vxc
ALDA~r ,t !5

d

dr
@r~r ,t !«xc~r!#, ~55!

where«xc(r) is the xc energy per particle of the homog
neous electron gas. In 2D it is given by

«xc52
4A2

3pr s
1

a0

2

11a1Ar s

11a1Ar s1a2r s1a3r s
3/2

e4m*

\2e
,

~56!

r s5
1

Apr
, ~57!

a0520.3568, a151.1300, a250.9052, a350.4165
~Refs. 21 and 22!

OEP approximation~which in this simple case is equiva
lent to the Hartree-Fock approximation!5,2

vxc
OEP~r ,t !52

1

2
vH~r ,t !, ~58!

GK approximation8 ~valid in the linear response regime!:

vxc,1
GK ~r ,v!5r1~r ,v! f xc~r0 ,v!, ~59!

wherevxc,1(r ,v) is a Fourier component ofvxc,1(r ,t) @de-
fined, with r1(r ,t), in the ‘‘Linear response’’ section# and
f xc,L(r0 ,v) is the longitudinal part of the frequency depe
dentxc kernel of the homogeneous electron gas.

VUC approximation10 for a circularly symmetric potentia
in 2D ~valid in the linear response regime!:

-



-

e

en
a

i

t

ed

In

,
th

o-

s
uld
or-

-
r

tes
-

for
to
re-
e

tion

es,
e of

-

ar-

p

(

PRB 59 7883EXACT EXCHANGE-CORRELATION POTENTIAL FOR A . . .
vxc,1
VUC~r ,v!5vxc

ALDA~r ,v!2 È r F 1

r0
S ¹H r0

2F f xc,L~r0 ,v!

2
d2r «xc

dr2 G Fv1~r ,v!

r
1

]v1~r ,v!

]r G J
2

2

r
¹@r0

2f xc,T~r0 ,v!#v1~r ,v!D Gdr ~60!

where v1(r ,t) is the velocity field and
f xc,L(r0 ,v), f xc,T(r0 ,v) are the longitudinal and the trans
verse part of the frequency dependentxc kernel of the ho-
mogeneous electron gas. In Eq.~60! we have made use of th
relationAxc(r ,t)5c* t¹vxc(r ,t)dt ~see Ref. 10!.

In both GK and VUC we have used forf xc(r0 ,v) the
expressions recently obtained by Nifosı´ et al.23

The comparison between the ‘‘exact’’ vxc(r ,t) and its
approximations is made plotting its first Fourier compon
vxc(r ,V). Since our calculations were done in the line
response regime, the difference betweenvxc(r ,V) and
vxc,1(r ,V) is negligible. Since the ‘‘exact’’ vxc,1(r ,V) is
purely real at nonresonant frequencies, we compare it w
the real part of the approximate forms introduced above.

In the case of weak correlation~Fig. 5, v051) all the
approximations reproduce~apart for an almost constan
shift!, the general trend. In the strong correlation case~Fig. 6,
v0'0.02) the agreement~again apart from a shift! is less
good and particularly poor for the OEP. A more detail
analysis can be done considering the xc fieldExc ~insets of
Figs. 5 and 6!, that disregards irrelevant constant shifts.
the case of weak correlation~insets of Fig. 5,v051) the
ALDA reproduces, except for smallr, the general trend
though underestimating the peak of the potential. In

FIG. 5. Comparison between the ‘‘exact’’ first Fourier compo-
nent vxc(r ,V) of the xc potential and some of its most used a
proximations~weak correlation casev051). In the inset we show
the corresponding comparison for the xc fieldExc(r ,t).
t
r

th

e

strong correlation case~inset of Fig. 6,v0'0.02) it under-
estimates the potential for very smallr, but, for intermediate
values, it gets closer toExc(r ,V). For weak correlation and
for small values ofr the OEP approximation does not repr
duce the ‘‘exact’’ behavior, while in the region in which
Exc(r ,V) is significantly nonzero it gets closer to the ‘‘ex-
act’’ result. In the limit of zero correlation the OEP, which i
equivalent to the Hartree-Fock theory for this system, wo
give the exact result. Its behavior gets worse when the c
relation increases~see Fig. 6!: it is the only approximation
that does not even reproduces the first peak ofExc(r ,V). On
the other hand, this is theonly approximation that has the
correct asymptotic behavior21/r 2 for r→`. In the weak
correlation case~Fig. 5! the GK approximation has a behav
ior similar to the OEP~except for the asymptotic behavio
that is not reproduced correctly!, while, for strong correlation
~Fig. 6! it reproduces the correct trend but underestima
Exc(r ,V) for small values ofr and overestimates it for in
termediate values. In the case of weak correlation~Fig. 5! the
VUC approximation does not reproduce the exact trend
small r, while, for intermediate values it get closer
Exc(r ,V) though underestimating its peak. For strong cor
lation its behavior is almost indistinguishable from th
ALDA.

V. ‘‘ADIABATIC’’ AND ‘‘DYNAMIC’’ EXCHANGE
CORRELATION POTENTIALS

Let us focus first on the xc fieldExc(r ,t). There has been
considerable effort, in recent years, aimed at the construc
of a fully dynamic xc potential, which, unlike the ALDA
potential, should depend on the density at all previous tim
i.e., have a memory. In order to assess the importanc
these ‘‘memory effects,’’ we shall now separateExc(r ,t) in
an ‘‘adiabatic’’ part Exc

ad(r ,t) containing the adiabatic evo
lution of the static exactExc(r ) and a ‘‘dynamical’’ one
Exc

dy(r ,t), peculiar of the time-dependent problem. Comp

-

FIG. 6. Same as Fig. 5 but for the strong correlation casev0

'0.02).
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ing Eqs.~44! and~46!, and making use of Eq.~45!, it is easy
to identify 2¹@¹2 ln r(r,t)/41u¹ ln r(r,t)u2/8#2EH(r ,t) as
adiabatic terms, while2¹@2u¹ f (r ,t)u2/22] f (r ,t)/]t# are
peculiar to the time-dependent case. However,Eext(r ,t)5
2¹vext(r ,t) is not an explicit functional of the time
dependent density and must be treated more carefully.
adiabatic part ofEext(r ,t) is defined as the electric fiel
Eext

ad (r ,t) which, when applied to the physical interactin
system, would yield the exact densityr(r ,t) while the sys-
tem remains in the instantaneous ground state.

It is then possible to define the ‘‘dynamical’’ part of the
external field as what remains after subtracting the adiab
part:

Eext
dy ~r ,t ![Eext~r ,t !2Eext

ad ~r ;t !. ~61!

Now we can separate, in the case of the two electron p
lem, Exc(r ,t) in an adiabatic@Exc

ad(r ,t)# and dynamical
@Exc

dy(r ,t)# part,Exc(r ,t)5Exc
ad(r ,t)1Exc

dy(r ,t), where

Exc
dy~r ,t !52¹H 2

] f ~r ,t !

]t
2

1

2
@¹ f ~r ,t !#2J 2Eext

dy ~r ,t !,

~62!

Exc
ad~r ,t !52¹F1

2S H 1

2
¹ ln@r~r ,t !#J 2

1
1

2
¹2$ ln@r~r ,t !#% D G

2EH~r ,t !2Eext
ad ~r ,t !. ~63!

From the definition ofExc , it is straightforward to recove
the corresponding expressions for the potentialvxc .

In the linear regime, using the linearized expression~54!
we obtain:

Exc,1
ad ~r ,t !52¹S 1

4
¹2

r1

r0
1

1

4
¹ lnr0¹

r1

r0
D2Eext,1

ad ~r ,t !

2EH,1~r ,t !, ~64!

Exc,1
dy ~r ,t ![Exc,1~r ,t !2Exc,1

ad ~r ,t ! ~65!

5 v̇2Eext,1~r ,t !1Eext,1
ad ~r ,t !, ~66!

where we have used the fact that¹ f (r ,t)5v(r,t) and ne-
glected terms of orderv2(r ,t).

The difficulty in the calculation ofEext
ad (r ,t) is that in

general its form is unknown and leads to a nonsepara
two-electron Schro¨dinger equation. In our case it is possib
to calculate analytically Eext

ad (r ,t) and its counterpar
Eext

dy (r ,t) in the limit of extremely weak and extremel
strong correlation, but for a general set of parameters it
be necessary to find an approximation forEext

ad (r ,t).
We will now show thatExc,1

dy (r ,t) in this system vanishe
exactly in both the weak and strong correlation limits, and
is likely to be very small in the intermediate cases.

A. Calculation of Exc,1
dy

„r ,t…

1. ‘‘Weak’’ correlation limit

In this regime the response of our system to the exte
potential
he

tic

b-

le,

ll

it

al

vext~r ,t !5
1

2
@v0

21v1
2~ t !#r 2 ~67!

with v1
2(t) defined by Eq.~32!, is a ‘‘breathing motion,’’

i.e., it can be described as a periodic transformation wit
length scale

l ~ t !}F d

dt
f~ t !G21/2

}uX~ t !u. ~68!

Then we can calculate explicitly all the quantities appe
ing in Eq. ~66!. The velocity field is given by

v~r ,t !5
l̇ ~ t !

l ~ t !
r̂5F d

dt
lnuX~ t !uG r̂ , ~69!

v̇~r ,t !5H d2

dt2
ln@ uX~ t !u#J r̂ ~70!

5H 1

uX~ t !u
d2

dt2
uX~ t !u2F 1

uX~ t !u
d

dt
uX~ t !uG2J r̂ ,

~71!

the external field is given by

Eext,1~r ,t !52v1
2~ t !r , ~72!

and the ‘‘adiabatic’’ external field is given by

Eext,1
ad ~r ,t !52F d

dt
f~ t !G2

r . ~73!

This is also the exactEext,1
ad (r ,t) corresponding to the nonin

teracting harmonic oscillator problem.
We can now prove thatExc,1

dy (r ,t)50 in this approxima-

tion. Using in Eq. ~71! uX(t)u5X(t)exp@2if(t)#, Ẍ5
2v(t)2X and dropping the terms of second order inl, we
get:

v̇~r ,t !5F2v1~ t !21
d

dt
f~ t !2G r ~74!

5Eext,1~r ,t !2Eext,1
ad ~r ,t ! ~75!

that substituted in Eq.~66! yields Exc,1
dy (r ,t)50.

2. ‘‘Strong’’ correlation limit

The equilibrium density reduces to ad-shell r0
52/(pr 0)d(r 2r 0/2) and we can treat the system classica
considering the equation of motion of the separationr 12 be-
tween two classical point charges~see Appendix C!. Under
the influence of the external potentialvext,15v1(t)2r 12

2 /2 the
equilibrium separationr 12 oscillates according to the class
cal equation of motion

r̈ 125Eext,1~ t !23v0
2~r 122r 0!, ~76!

with Eext,1(t)52v1
2(t)r 0 and r 0 is the equilibrium separa

tion in the absence of the external field~we use the linear-
response approximation!. We can now define the ‘‘adiabati



tio

io

fo

d

ca
al
e

th
-
to

th
d
tu
io
n
, a
os
g
tis
re
e
t

ed
K

en
th

he

at,
tial,

his
sh-
the
the
re,
ther
re-

t a
of

the

of
o-

nc-

on-
tatic

a

,
ng

s-

ly
-
,
an-

om-

-
71
.

PRB 59 7885EXACT EXCHANGE-CORRELATION POTENTIAL FOR A . . .
external’’ field as the one that produces the same devia
from equilibrium asEext,1(t), under static conditions (r̈ 12
50). That means that

Eext,1
ad ~ t !53v0

2@r 12~ t !2r 0#, ~77!

where r 12(t) is the solution of Eq.~76!. From this we can
deduce that

v̇15Eext,1~ t !2Eext,1
ad ~ t !, ~78!

wherev1 is the exact velocity field in this limit. This implies
that Eext,1

dy (t)50 in this limit.

3. Nonextreme cases

In this case the problem is to find a good approximat
for Eext

ad (r ,t). In the case we are consideringEext(r ,t)5
2v(t)2r so in order to have a simple and separable form
Eext

ad (r ,t), we can choose:

Eext
ad ~r ,t !'2a~ t !r , ~79!

Eext
dy ~r ,t !'2@v~ t !2r2a~ t !r #, ~80!

and determinea by optimizing the density.
For the ‘‘low-correlation’’ parameterv051 the approxi-

mation Eext
ad (r ,t)52(ḟ)2r gives very good results an

r0(r ;t) is indistinguishable fromr(r ,t) within the numerical
error. The results for the ‘‘high-correlation’’ parameterv0
'0.02 are less good. They can be improved usinga(t)
5v0

2@11« cos(Vt)# and tuning the parameter«. In every
case, also in these intermediate casesExc

dy(r ,t)'0 within the
numerical error.

We conclude that for this particular system the dynami
part of Exc(r ,t) is almost negligible so that the dynamic
part of vxc is basically an irrelevant constant. However, w
caution that this is at least partly a special feature of
harmonic system studied here~see discussion in the follow
ing section! and should not be uncritically generalized
other systems.

VI. DISCUSSION AND SUMMARY

The comparisons performed in this paper between
‘‘ exact’’ xc potential of a two-electron harmonic atom an
several approximate expressions for this quantity, consti
an extremely severe test of the approximations in quest
Aside from the exchange-only OEP, all the approximatio
considered are based on the homogeneous electron gas
therefore, are expected to be valid only for systems wh
density is slowly varying on the scale of the local avera
interelectron distance. This condition is certainly not sa
fied by our model system—not in the weak correlation
gime, in which the length scale of density variation coincid
with the average interelectron distance, and much less in
strong correlation regime, in which the latter greatly exce
the former. In this light, the fact that the ALDA and G
produce xc fields reasonably close to the ‘‘exact’’ ones, al-
though qualitatively incorrect at large distance from the c
ter, should be regarded as an unexpected success of
approximations.

Another surprising result of our study comes from t
n

n

r

l

e

e

te
n.
s
nd,
e

e
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s

-
ese

separation ofExc(r ,t) into an ‘‘adiabatic’’ and a purely ‘‘dy-
namical’’ part. The somewhat counterintuitive result is th
in the case of a time-dependent harmonic external poten
the dynamical part ofExc is zero in the limits of weak and
strong correlation and almost negligible in between. T
happens at frequencies well above the first excitation thre
old, where the density response is far from adiabatic. In
weak correlation regime, this result depends crucially on
form of the wave function in a parabolic potential. Therefo
we do not expect the conclusion to be generalizable to o
potentials. In the strong correlation regime, however, the
duction of the dynamics to harmonic oscillations abou
classical equilibrium configuration appears to be a feature
several electronic systems. It is this feature that leads to
vanishing ofExc

dy(r ,t) in this regime.
These results throw some light on the surprising ability

the ALDA to give good results even outside its natural d
main of validity ~low-frequency regime!: in a system in
which the nonadiabatic corrections are small, a static fu
tional of the density~such as the LDA xc potential!, which
works well in the static regime, is expected to give a reas
able time-dependent potential upon replacement of the s
density with the time-dependent one.

The recently introduced VUC approximation, contains
‘‘dynamical’’ correction to ALDA @see Eq.~60!# and, in the
light of the ‘‘exact’’ behavior ofExc

dy(r ,t) just underlined, it
is interesting to notice that the ‘‘dynamical’’ part of VUC is
for this system, small, becoming almost negligible for stro
correlation.

In summary, we have found that, for this particular sy
tem, the ‘‘dynamical’’ part ofExc is almost negligible, and
the ALDA, GK, and VUC approximations work reasonab
well at all coupling strengths„although the VUC underesti
matesExc(r ,t) for weak correlation…. The OEP, as expected
is reasonable only for weak correlation. The main discrep
cies are found to occur at smallr and at larger ~except for
the OEP that has the exact asymptotic behavior!. The ques-
tion of whether these results are generalizable to more c
plex systems remains open.
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APPENDIX A

Making the change of variableR52R, Eq. ~7! can be
rewritten as

S 2¹R
2 1

1

4
v2~ t !R2DCCM~R,t !5 i

]

]t
CCM~R,t !.

~A1!

Separating angular and radial coordinates as in Eq.~11!, we
obtain the radial equation:
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S 2
]2

]R2
2

1

R

]

]R
1

1

4
v2~ t !R21

m2

R2 D xn,m~R,t !

5 i
]

]t
xn,m~R,t !. ~A2!

Inserting into Eq.~A2! the guess

xn,m~R,t !5A~ t !Rmexp@B~ t !R2#Ln
m@C~ t !R2# ~A3!

~a generalization of the corresponding static solution!, we
obtain the following equations for the time-dependent co
ficients:

iĊ18BC14C250, ~A4!

i
Ȧ

A
14B14mB24nC50, ~A5!

iḂ14B22
1

4
v2~ t !50. ~A6!

With the ansatzB5( i /4)(Ẋ/X), Eq. ~A6! becomes

Ẍ52v2~ t !X, ~A7!

the classical equation of motion for a harmonic oscillat
The solutionX(t) can be written as

X~ t !5uX~ t !ueif~ t !5XR1 iXI . ~A8!

Sincexn,m(R,t) must not diverge asR→`, we must impose
that the real part ofB(t)5BR1 iBI be negative. Using~A8!,
B(t) can be written as

B~ t !52
1

4

df

dt
1

i

4

d lnuXu
dt

~A9!

52
W

4uXu2
1

i

4

d lnuXu
dt

, ~A10!

whereW5ẊIXR2ẊRXI is a constant, being the Wronskia
of two solutions of Eq.~A7!. In order to have a normalizabl
wave function not identically zero, we have then to impo
that W.0 or equivalently thatdf/dt.0.

Requiring thatCPR, from the real part of Eq.~A4! and
from Eq. ~A10!, we get

C~ t !5~1/2!~W/uXu2!, ~A11!

which also satisfies the imaginary part of Eq.~A4!. Now we
can solve Eq.~A5! from which, integrating, we get:

A~ t !5A~0!•expH 2~m11!ln
X~ t !

X~0!

2 i ~2n1m11!@f~ t !2f~0!#J . ~A12!

A(0) is determined by the normalization conditio
*0

`uxnm(R,t)u2R dR51,
f-

.

e

A~0!5A n!

2m~n1m!!
S df

dt U t50D ~m11!

. ~A13!

Finally, inserting all the expressions for the coefficients
Eq. ~A3!, after some algebra we get:

xn,m~R,t;X!5A n!

2m~n1m!!
S df

dt D ~m11!/2

3exp$ i ~2n1m11!@f~0!2f~ t !#%Rm

3expF S 2
df

dt
1 i

d lnuXu
dt DR2

4 GLn
mS df

dt

R2

2 D .

~A14!

APPENDIX B

The solution of static radial equation for the RM chann
can be written as:

Rn,l~r!5
u~r!

A r

Av r

, ~B1!

with

u~r!5e2~1/2!r2
rs(

n50

`

anrn, ~B2!

r[Av r r , ~B3!

v r[
v0

2
, ~B4!

s5
1

2
1Al . ~B5!

The coefficients of the sum in Eq.~B2! are related by

Fs~s11!2 l 1
1

4Ga15
a0

Av r

, ~B6!

F ~n1s!~n1s21!2 l 1
1

4Gan2
an21

Av r

1F « r

v r
2122~n221s!Gan2250, ~B7!

where « r is the part of the energy coming from the RM
channel anda0 is fixed by the normalization condition. Im
posing the conditionsan215” 0, an50, an1150, the sum
in Eq. ~B2! can be made finite and the coefficientsan calcu-
lated. From these conditions we also obtain an expression
the energy« r5v r(2n12s21) and an expression~less
straightforward! for v r .
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In our calculations we have truncated the sum in Eq.~B2!
at n52 obtainingv051 ~weak correlation case! and atn
55 obtaining v05(2523A33)/328'0.02 ~strong correla-
tion case!.

APPENDIX C

In the limit of strong correlation@Eq. ~30!# and linear-
response regime the potential energy can be expanded
the second order about the classical solution and we can
approximate the momentump with the radial componentpr

[2 i (]/]r ) r̂ since, in this limit, the dynamic of the problem
is basically confined in ther̂ direction. The Hamiltonian of
the relative motion problem in Eq.~8! can then be approxi
mated as:

He f f~ t !5
pr

2

2m
1

m

2
ṽ2~r 2r 0!22mEext,1~ t !~r 2r 0!,

~C1!

where m51/2 is the reduced mass,r 05(1/mv0
2)1/3 is the

classical separation between electrons in the linear reg
ṽ2(t)53v0

21v1
2(t) andEext,1(t)52v1

2(t)r 0 can be viewed
as an ‘‘external force.’’ If we definer 15r 2r 0 , the deviation
from the classical equilibrium position, we can use t
change of variabler 15y2x0(t) so that the Hamiltonian
becomes:7

H~ t !5
pr

2

2m
1

m

2
ṽ2y22mṽ2x0~ t !y2m ẍ0~ t !y2mEext,1~ t !y,

~C2!

where we have dropped the irrelevant terms depending
the time alone. If we impose that

ẍ052ṽ2x02Eext,1~ t !, ~C3!

we get
ev
to
lso

e,

n

H~ t !5
pr

2

2m
1

m

2
ṽ2y2, ~C4!

and the problem reduces to a one-dimensional harmonic
cillator and can be solved exactly in a way similar to the o
shown for the two-dimensional harmonic oscillator in A
pendix A. The general solution takes the form:

C~y,t !5S 1

2nn!Ap
D 1/2S df̃

dt
D 1/4

e~ i /2!~ Ẋ̃/X̃!y2

3ei ~1/21n![ f̃~0!2f̃~ t !]HnF S df̃

dt
D 1/2

yG , ~C5!

whereHn(x) are the Hermite polynomials andX̃(t) is acom-
plex solution of the classical equation of motion

Ẍ̃52ṽ2~ t !X̃, ~C6!

X̃~ t !5uX̃~ t !uei f̃~ t !, ~C7!

with a phasef̃(t) satisfying the conditiondf̃/dt.0. The
solution of the original problem Eq.~C1! with n50 is, there-
fore,

C~r ,t !5
1

p1/4S df̃

dt
D 1/4

e~ i /2![ f̃~0!2f̃~ t !]e2 im ẋ0~ t !~r 2r 0!

3e~ i /2!m~ Ẋ̃/X̃![ r 2r 01x0~ t !] 2

3expF i E
0

t

dt8S m

2
ṽ2x0

22
1

2
m ẋ0

2D G . ~C8!

We stress that in the regime of high correlationL/r0→0,
whereL}v0

1/2 the width of the Gaussian entering the sol
tion ~C8!, the wave function is concentrated aroundr 0 @that
justifies the approximation~C1!# and tends to ad function in
the extreme limit.
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