20 research outputs found

    Making waves: collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice. [Abstract copyright: Copyright © 2021 Elsevier Ltd. All rights reserved.

    Making Waves:Collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE “SARS-CoV-2 in sewage” database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice.</p

    Making Waves : Collaboration in the time of SARS-CoV-2-rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases.

    Full text link
    OBJECTIVES: The new metallo-beta-lactamase VIM-13 has been recently characterized. In comparison with the VIM-1 enzyme, VIM-13 showed 19 amino acid differences, 2 of which were located in the active site centre. The main objective of the present study was to assess whether differences between VIM-1 and VIM-13 beta-lactamases in the active site, at His224Leu and Ser228Arg, are necessary and sufficient to explain the microbiological and biochemical differences between the two enzymes. METHODS: Single mutants VIM-13 (Leu224His) and VIM-13 (Arg228Ser) and double mutant VIM-13 (Leu224His, Arg228Ser) were created by site-directed mutagenesis with the bla(VIM-13) gene as template. VIM-1, VIM-13 and VIM-13 (Leu224His, Arg228Ser) were purified by affinity chromatography, and kinetic parameters for these enzymes were obtained with ceftazidime, cefepime and ampicillin. RESULTS: Ceftazidime and cefepime MICs (mg/L) for Escherichia coli TG1 expressing VIM-1, VIM-13, VIM-13 (Leu224His), VIM-13 (Arg228Ser) and VIM-13 (Leu224His, Arg228Ser) were >256 and 64, 6 and 4, 8 and 1, >256 and 8, and >256 and 48, respectively. VIM-1, VIM-13 and VIM-13 (Leu224His, Arg228Ser) revealed k(cat)/K(m) values (M(-1)s(-1)) for ceftazidime of 3.7 E(4), 1.9 E(4) and 10 E(4), respectively, and revealed k(cat)/K(m) values for cefepime of 3.5 E(5), 3 E(4) and 1.5 E(5), respectively. CONCLUSIONS: Overall, the results showed that the two residues located in the L3 loop are sufficient to confer the substrate specificity of each enzyme, thus highlighting the importance of the L3 loop of the active site in the evolution of VIM-type metallo-beta-lactamases

    Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in <i>Acinetobacter baumannii</i> ATCC 17978

    Get PDF
    <div><p>Many strains of <i>Acinetobacter baumannii</i> have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of <i>A</i>. <i>baumannii</i> ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in <i>A</i>. <i>baumannii</i> ATCC 17978.</p></div
    corecore