13 research outputs found

    Quantitative Susceptibility Imaging of Tissue Microstructure Using Ultra-High Field MRI

    Get PDF
    This thesis has used ultra-high field (UHF) magnetic resonance imaging (MRI) to investigate the fundamental relationships between tissue microstructure and such susceptibility-based contrast parameters as the apparent transverse relaxation rate (R2*), the local Larmor frequency shift (LFS) and quantitative volume magnetic susceptibility (QS). The interaction of magnetic fields with biological tissues results in shifts in the LFS which can be used to distinguish underlying cellular architecture. The LFS is also linked to the relaxation properties of tissues in a gradient echo MRI sequence. Equally relevant, histological analysis has identified iron and myelin as two major sources of the LFS. As a result, computation of LFS and the associated volume magnetic susceptibility from MRI phase data may serve as a significant method for in vivo monitoring of changes in iron and myelin associated with normal, healthy aging, as well as neurological disease processes. In this research, the cellular level underpinnings of the R2* and LFS signals were examined in a model rat brain system using 9.4 T MRI. The study was carried out using biophysical modeling and correlation with quantitative histology. For the first time, multiple biophysical modeling schemes were compared in both gray and white matter of excised rat brain tissue. Suprisingly, R2* dependence on tissue orientation has not been fully understood. Accordingly, scaling relations were derived for calculating the reversible, mesoscopic magnetic field component, R2\u27, of the apparent transverse relaxation rate from the orientation dependence in gray and white matter. Our results demonstrate that the orientation dependence of R2* and LFS in both white and cortical gray matter has a sinusoidal dependence on tissue orientation and a linear dependence on the volume fraction of myelin in the tissue. A susceptibility processing pipeline was also developed and applied to the calculation of phase-combined LFS and QS maps. The processing pipeline was subsequently used to monitor myelin and iron changes in multiple sclerosis (MS) patients compared to healthy, age and gender-matched controls. With the use of QS and R2* mapping, evidence of statistically significant increases in iron deposition in sub-cortical gray matter, as well as myelin degeneration along the white matter skeleton, were identified in MS patients. The magnetic susceptibility-based MRI methods were then employed as potential clinical biomarkers for disease severity monitoring of MS. It was demonstrated that the combined use of R2* and QS, obtained from multi-echo gradient echo MRI, could serve as an improved metric for monitoring both gray and white matter changes in early MS

    An Open Resource for Non-human Primate Imaging.

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging

    Get PDF
    The purpose of our study was to evaluate the utility of measurements of cortical surface magnetization transfer ratio (csMTR) on the inner, mid and outer cortical boundaries as clinically accessible biomarkers of cortical gray matter pathology in multiple sclerosis (MS). Twenty-five MS patients and 12 matched controls were recruited from the MS Clinic of the Montreal Neurological Institute. Anatomical and magnetization transfer ratio (MTR) images were acquired using 3 Tesla MRI at baseline and two-year time-points. MTR maps were smoothed along meshes representing the inner, mid and outer neocortical boundaries. To evaluate csMTR reductions suggestive of sub-pial demyelination in MS patients, a mixed model analysis was carried out at both the individual vertex level and in anatomically parcellated brain regions. Our results demonstrate that focal areas of csMTR reduction are most prevalent along the outer cortical surface in the superior temporal and posterior cingulate cortices, as well as in the cuneus and precentral gyrus. Additionally, age regression analysis identified that reductions of csMTR in MS patients increase with age but appear to hit a plateau in the outer caudal anterior cingulate, as well as in the precentral and postcentral cortex. After correction for the naturally occurring gradient in cortical MTR, the difference in csMTR between the inner and outer cortex in focal areas in the brains of MS patients correlated with clinical disability. Overall, our findings support multi-surface analysis of csMTR as a sensitive marker of cortical sub-pial abnormality indicative of demyelination in MS patients

    Inter-echo variance as a weighting factor for multi-channel combination in multi-echo acquisition for local frequency shift mapping

    No full text
    © 2014 Wiley Periodicals, Inc. Purpose To develop and evaluate a local frequency shift (LFS) mapping method specifically designed for multi-echo acquisitions and multi-channel receive coils. Methods The proposed method uses the pixel-by-pixel inter-echo variance (IEV) as a weighting factor during channel-combination. Five healthy volunteers were scanned at 7 T. The IEV-weighted method was quantitatively compared to established (adaptive and Hermitian product) channel-combination methods with respect to IEV of LFS over the entire brain. Results In all experiments, the IEV-weighted method generated LFS maps free of artifacts caused by unwrapping errors. Based on measurements of the inter-echo frequency variance throughout the whole brain, the IEV-weighted method produced the lowest variation and the best contrast at the edge of the brain. Conclusion The primary finding of the present study is that accurate LFS maps are achievable if the data from each channel is processed independently prior to combination followed by a weighted combination using IEV as the weighting term. The software is freely available to the scientific community

    Permanent tissue damage in multiple sclerosis lesions is associated with reduced pre-lesion myelin and axon volume fractions

    No full text
    BACKGROUND: The use of advanced magnetic resonance imaging (MRI) techniques in MS research has led to new insights in lesion evolution and disease outcomes. It has not yet been determined if, or how, pre-lesional abnormalities in normal-appearing white matter (NAWM) relate to the long-term evolution of new lesions. OBJECTIVE: To investigate the relationship between abnormalities in MRI measures of axonal and myelin volume fractions (AVF and MVF) in NAWM preceding development of black-hole (BH) and non-BH lesions in people with MS. METHODS: We obtained magnetization transfer and diffusion MRI at 6-month intervals in patients with MS to estimate MVF and AVF during lesion evolution. Lesions were classified as either BH or non-BH on the final imaging visit using T(1) maps. RESULTS: Longitudinal data from 97 new T(2) lesions from 9 participants were analyzed; 25 lesions in 8 participants were classified as BH 6–12 months after initial appearance. Pre-lesion MVF, AVF, and MVF/AVF were significantly lower, and T(1) was significantly higher, in the lesions that later became BHs (p  0.05). CONCLUSION: The present work demonstrated that pre-lesion abnormalities are associated with worse long-term lesion-level outcome

    The Evaluation of Magnesium Chloride within a Polyethylene Glycol Formulation in a Porcine Model of Acute Spinal Cord Injury.

    No full text
    A porcine model of spinal cord injury (SCI) was used to evaluate the neuroprotective effects of magnesium chloride (MgCl2) within a polyethylene glycol (PEG) formulation, called AC105 (Acorda Therapeutics Inc., Ardsley, NY). Specifically, we tested the hypothesis that AC105 would lead to greater tissue sparing at the injury site and improved behavioral outcome when delivered in a clinically realistic time window post-injury. Four hours after contusion/compression injury, Yucatan minipigs were randomized to receive a 30-min intravenous infusion of AC105, magnesium sulfate (MgSO4), or saline. Animals received 4 additional infusions of the same dose at 6-h intervals. Behavioral recovery was tested for 12 weeks using two-dimensional (2D) kinematics during weight-supported treadmill walking and the Porcine Injury Behavior Scale (PTIBS), a 10-point locomotion scale. Spinal cords were evaluated ex vivo by diffusion-weighted magnetic resonance imaging (MRI) and subjected to histological analysis. Treatment with AC105 or MgSO4 did not result in improvements in locomotor recovery on the PTIBS or in 2D kinematics on weight-supported treadmill walking. Diffusion weighted imaging (DWI) showed severe loss of tissue integrity at the impact site, with decreased fractional anisotropy and increased mean diffusivity; this was not improved with AC105 or MgSO4 treatment. Histological analysis revealed no significant increase in gray or white matter sparing with AC105 or MgSO4 treatment. Finally, AC105 did not result in higher Mg2+ levels in CSF than with the use of standard MgSO4. In summary, when testing AC105 in a porcine model of SCI, we were unable to reproduce the promising therapeutic benefits observed previously in less-severe rodent models of SCI
    corecore