503 research outputs found

    Confidence Intervals for the Area Under the Receiver Operating Characteristic Curve in the Presence of Ignorable Missing Data

    Get PDF
    Receiver operating characteristic curves are widely used as a measure of accuracy of diagnostic tests and can be summarised using the area under the receiver operating characteristic curve (AUC). Often, it is useful to construct a confidence interval for the AUC; however, because there are a number of different proposed methods to measure variance of the AUC, there are thus many different resulting methods for constructing these intervals. In this article, we compare different methods of constructing Wald‐type confidence interval in the presence of missing data where the missingness mechanism is ignorable. We find that constructing confidence intervals using multiple imputation based on logistic regression gives the most robust coverage probability and the choice of confidence interval method is less important. However, when missingness rate is less severe (e.g. less than 70%), we recommend using Newcombe\u27s Wald method for constructing confidence intervals along with multiple imputation using predictive mean matching

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Modeling galactic halos with predominantly quintessential matter

    Get PDF
    This paper discusses a new model for galactic dark matter by combining an anisotropic pressure field corresponding to normal matter and a quintessence dark energy field having a characteristic parameter ωq\omega_q such that 1<ωq<13-1<\omega_q< -\frac{1}{3}. Stable stellar orbits together with an attractive gravity exist only if ωq\omega_q is extremely close to 13-\frac{1}{3}, a result consistent with the special case studied by Guzman et al. (2003). Less exceptional forms of quintessence dark energy do not yield the desired stable orbits and are therefore unsuitable for modeling dark matter.Comment: 12 pages, 1 figur

    Galactic rotation curves inspired by a noncommutative-geometry background

    Full text link
    This paper discusses the observed at rotation curves of galaxies in the context of noncommutative geometry. The energy density of such a geometry is diffused throughout a region due to the uncertainty encoded in the coordinate commutator. This intrinsic property appears to be sufficient for producing stable circular orbits, as well as attractive gravity, without the need for dark matter.Comment: 12 pages, 3 figures. Published in Gen.Rel.Grav. 44 (2012) 905-91

    The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro

    Get PDF
    We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these

    Rotation Curve of Galaxies by the Force Induced by Mass of Moving Particles

    Full text link
    We suggest that there is a novel force which is generated by the mass of relatively moving particles. The new force which we named Mirinae Force is a counterpart of the magnetic force operating between electrically charged moving particles. Instead of using the conventional dark matter, we applied the mirinae force to a particular model system of the spiral galaxy in which most of the galaxy's mass is located within the central region where some portion of the inner mass is in revolving motion at a relativistic speed. The calculation yielded three important results that illustrate the existence of mirinae force and validate the proposed model: First, the mirinae force in this model explains why most of the matters in the galactic disk are in the circular motion which is similar to cycloid. Second, the mirinae force well explains not only the flat rotation curve but also the varied slope of the rotation curve observed in the spiral galaxies. Third, at the flat velocity of 220 Km/s, the inner mass of the Milky Way calculated by using the proposed model is 6.0\times10^11 M\odot, which is very close to 5.5\times10^11 M\odot (r <50 Kpc, including Leo I) estimated by using the latest kinematic information. This means that the mirinae force well takes the place of the dark matter of the Milky Way

    Scalar Field Dark Matter

    Get PDF
    This work is a review of the last results of research on the Scalar Field Dark Matter model of the Universe at cosmological and at galactic level. We present the complete solution to the scalar field cosmological scenario in which the dark matter is modeled by a scalar field Φ\Phi with the scalar potential V(Φ)=V0(cosh(λκ0Φ)1)V(\Phi)=V_{0}(cosh {(\lambda \sqrt{\kappa_{0}}\Phi)}-1) and the dark energy is modeled by a scalar field Ψ\Psi, endowed with the scalar potential V~(Ψ)=V0~(sinh(ακ0Ψ))β\tilde{V}(\Psi)= \tilde{V_{0}}(\sinh{(\alpha \sqrt{\kappa_{0}}\Psi)})^{\beta}, which together compose the 95% of the total matter energy in the Universe. The model presents successfully deals with the up to date cosmological observations, and is a good candidate to treat the dark matter problem at the galactic level.Comment: 11 pagez, 5 figures, REVTeX. To appear in proceedings of the ``Mexican Meeting on Exact Solutions and Scalar Fields in Gravity '', in honour of Heinz Dehnen's 65th Birthday and Dietrich Kramer's 60th Birthday. Mexico D.F., Mexico, in press. More info at http://www.fis.cinvestav.mx/~siddh/PHI

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change
    corecore