859 research outputs found

    Discovery Of Cold, Pristine Gas Possibly Accreting Onto An Overdensity Of Star-Forming Galaxies At Redshift z ~ 1.6

    Full text link
    We report the discovery of large amounts of cold (T ~ 10^4 K), chemically young gas in an overdensity of galaxies at redshift z ~ 1.6 in the Great Observatories Origins Deep Survey southern field (GOODS-S). The gas is identified thanks to the ultra-strong Mg II absorption features it imprints in the rest-frame UV spectra of galaxies in the background of the overdensity. There is no evidence that the optically-thick gas is part of any massive galaxy (i.e. M_star > 4x10^9 M_sun), but rather is associated with the overdensity; less massive and fainter galaxies (25.5 < z_850 < 27.5 mag) have too large an impact parameter to be causing ultra-strong absorption systems, based on our knowledge of such systems. The lack of corresponding Fe II absorption features, not detected even in co-added spectra, suggests that the gas is chemically more pristine than the ISM and outflows of star-forming galaxies at similar redshift, including those in the overdensity itself, and comparable to the most metal-poor stars in the Milky Way halo. A crude estimate of the projected covering factor of the high-column density gas (N_H >~ 10^20 cm-2) based on the observed fraction of galaxies with ultra-strong absorbers is C_F ~ 0.04. A broad, continuum absorption profile extending to the red of the interstellar Mg II absorption line by <~ 2000 km/s is possibly detected in two independent co-added spectra of galaxies of the overdensity, consistent with a large-scale infall motion of the gas onto the overdensity and its galaxies. Overall, these findings provides the first tentative evidence of accretion of cold, chemically young gas onto galaxies at high redshift, possibly feeding their star formation activity. The fact that the galaxies are members of a large structure, as opposed to field galaxies, might play a significant role in our ability to detect the accreting gas.Comment: 57 pages, 17 figures, 1 table; accepted for publication by ApJ (Aug 9, 2011); minor modifications to match the accepted versio

    Light availability controls in the benthic nearshore ecosystem of the Elwha River

    Get PDF
    The Elwha River Restoration Project was the largest US dam removal project to date, both in dam height and sediment released. During dam removal in 2011–2014, ~18 Mt of sediment washed downriver, and macroalgae virtually disappeared from the adjacent nearshore ecosystem. The link between current benthic light availability and sediment delivery and transport has been investigated in order to understand conditions during dam removal. Seven instrument platforms were deployed on the 10-m isobath along a 16 km transect centered on the river mouth for seven fortnightly periods in 2016 and 2017 to monitor near-bed photosynthetically available radiation (PAR), suspended sediment, wave climate, current velocity, temperature, and salinity. Water-column profiles, bed sediment, and water samples were collected during deployments. Seasonally variable chlorophyll-a and colored dissolved organic matter did not contribute substantially to light attenuation compared to suspended sediment. Along the 10-m isobath within 1.5 km of the river mouth, the greatest light attenuation occurred when wave events coincided with or followed periods of high river discharge. However, discharge events lasting attenuation; energetic tidal currents promote rapid sediment export out of the nearshore environment. In the buoyant plume, maximum light attenuation occurred within 1 m of the surface, reducing light through the rest of the water column. Benthic PAR varied more during spring tides when plume location was more variable. Alongshore 1.5 to 8 km from the river mouth, light availability was not directly coupled to river discharge. Light attenuation occurred throughout the water column, influenced by resuspension due to strong currents and wave events. This subsurface attenuation would not be captured by remote sensing. Predicting benthic light availability over event, tidal, and seasonal timescales will improve management strategies designed to limit ecosystem damage during other dam removals or sediment delivery events

    Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania)

    Get PDF
    Purpose: Chlor-alkali plants are one of the most important point sources of mercury to aquatic environment. The problem of Hg contamination has been studied in a region, Rm Valcea (Romania), impacted by the wastewater discharge of a chlor-alkali plant. The purpose of the present study is to evaluate the current status of mercury pollution in the Babeni reservoir (Olt River) and the exposure of local population via fish consumption to mercury originating from the chlor-alkali plant. Methods: Sediments were collected from Valcea, Govora and Babeni reservoirs. Grain size distribution, organic content and total mercury (THg) concentrations were analysed in sediments. Fish were purchased from local anglers, and the scalp hair was collected from volunteers. THg in sediment, fish and hair samples was determined using an atomic absorption spectrophotometer for Hg determination. Monomethylmercury (MMHg) was analysed in the muscle and liver tissues by species-specific isotope dilution and capillary gas chromatography hyphenated to inductively coupled plasma mass spectrometer. Results: High mercury concentrations were found in the sediments and in fish from Babeni reservoir, with a median of 2.1mg/kg (IQR = 3.2) in sediments and a mean value of 1.8 ± 0.8mg/kg_ww in fish muscle. MMHg concentrations in fish were well above the WHO guidelines for fish consumption. Local population consuming fish from the Babeni reservoir had THg concentrations in hair significantly higher than those consuming fish from upstream reservoirs and/or from the shops and reached a median value of 2.5mg/kg (IQR = 3.6). Conclusions: The remnant pollution in the fish of this reservoir, and probably many other lakes and reservoirs receiving Hg polluted wastewater, represents a considerable health risk for the local fish consumer

    Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines

    Get PDF
    Background: Multiple imputation (MI) provides an effective approach to handle missing covariate data within prognostic modelling studies, as it can properly account for the missing data uncertainty. The multiply imputed datasets are each analysed using standard prognostic modelling techniques to obtain the estimates of interest. The estimates from each imputed dataset are then combined into one overall estimate and variance, incorporating both the within and between imputation variability. Rubin's rules for combining these multiply imputed estimates are based on asymptotic theory. The resulting combined estimates may be more accurate if the posterior distribution of the population parameter of interest is better approximated by the normal distribution. However, the normality assumption may not be appropriate for all the parameters of interest when analysing prognostic modelling studies, such as predicted survival probabilities and model performance measures. Methods: Guidelines for combining the estimates of interest when analysing prognostic modelling studies are provided. A literature review is performed to identify current practice for combining such estimates in prognostic modelling studies. Results: Methods for combining all reported estimates after MI were not well reported in the current literature. Rubin's rules without applying any transformations were the standard approach used, when any method was stated. Conclusion: The proposed simple guidelines for combining estimates after MI may lead to a wider and more appropriate use of MI in future prognostic modelling studies
    corecore