7 research outputs found

    Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    Get PDF
    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.Comment: 13 pages, 4 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62326, see also the public announcement at http://www.ligo.org/science/Publication-S5IMBH

    Optical forces and torques for the levitation and manipulation of nanoparticles near surfaces and in complex beams

    No full text
    This study presents a differentiated carbonate budget for marine surface sediments from the Mid-Atlantic Ridge of the South Atlantic, with results based on carbonate grain-size composition. Upon separation into sand, silt, and clay sub-fractions, the silt grain-size distribution was measured using a SediGraph 5100. We found regionally characteristic grain-size distributions with an overall minimum at 8 µm equivalent spherical diameter (ESD). SEM observations reveal that the coarse particles (> 8 µm ESD) are attributed to planktic foraminifers and their fragments, and the fine particles (< 8 µm ESD) to coccoliths. On the basis of this division, the regional variation of the contribution of foraminifers and coccoliths to the carbonate budget of the sediments are calculated. Foraminifer carbonate dominates the sediments in mesotropic regions whereas coccoliths contribute most carbonate in oligotrophic regions. The grain size of the coccolith share is constant over water depth, indicating a lower susceptibility for carbonate dissolution compared to foraminifers. Finally, the characteristic grain-size distribution in fine silt (< 8 µm ESD) is set into context with the coccolith assemblage counted and biometrically measured using a SEM. The coccoliths present in the silt fraction are predominantly large species (length > 4 µm). Smaller species (length < 4 µm) belong to the clay fraction (< 2 µm ESD). The average length of most frequent coccolith species is connected to prominent peaks in grain-size distributions (ESD) with a shape factor. The area below Gaussian distributions fitted to these peaks is suggested as a way to quantitatively estimate the carbonate contribution of single coccolith species more precisely compared to conventional volume estimates. The quantitative division of carbonate into the fraction produced by coccoliths and that secreted by foraminifers enables a more precise estimate for source/sink relations of consumed and released CO2 in the carbon cycle. The allocation of coccolith length and grain size (ESD) suggests size windows for the separation or accumulation of distinct coccolith species in investigations that depend on non to slightly-mixed signals (e.g., isotopic studies)

    Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones

    No full text
    Melatonin had previously been shown to reduce up to four 2, 2'- azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) cation radicals (ABTS•+) via a scavenger cascade ending with N1-acetyl-N2-formyl-5- methoxykynuramine (AFMK). However, when melatonin is added to the reaction system in much lower quantities than ABTS•+, the number of radicals scavenged per melatonin molecule is considerably higher and can attain a value of ten. Under conditions allowing for such a stoichiometry, novel products have been detected which derive from AFMK (1). These were separated by repeated chromatography and the major compounds were characterized by spectroscopic methods, such as mass spectrometry (HPLCMS, EI-MS and ESI-HRMS), 1H nuclear magnetic resonance (NMR) and 13C NMR, heteronuclear multiple bond connectivity (HMBC) correlations. The identified substances are formed by re-cyclization and represent 3- indolinones carrying the side chain at C2; the N-formyl group can be maintained, but deformylated analogs seem to be also generated, according to MS. The primary product from AFMK (1) is N-(1-formyl-5-methoxy-3- oxo-2,3-dihydro-1H-indol-2-ylidenemethyl)-acetamide (2), which is obtained after purification as E- and Z-isomers (2a, 2b); a secondary product has been identified as N-(1-formyl-2-hydroxy-5-methoxy-3-oxo-2,3-dihydro-1H-indol- 2-ylmethyl)-acetamide (3). When H2O2 is added to the ABTS•+ reaction mixture in quantities not already leading to substantial reduction of thisradical, compound 3 is isolated as the major product, whereas 2a and 2b are virtually absent. The substances formed differ from all previously knownoxidation products which derive from melatonin and are, among these, the first 3-indolinones. Moreover, the aliphatic side chain at C2 is reminiscent of other substances which have been synthesized in the search for melatonin receptor ligands
    corecore