130 research outputs found

    Another Chapter in the History of the European Invasion by the Western Conifer Seed Bug, Leptoglossus occidentalis: The Iberian Peninsula

    Get PDF
    The Western conifer seed bug, Leptoglossus occidentalis, is native to North America and has already been considered a significant pest in several European countries since its first observation in Italy in 1999. In Spain and Portugal, it was recorded for the first time in 2003 and 2010, respectively, and its impact on Stone Pine (Pinus pinea) is of major concern. Before developing control measures for this insect pest, it is paramount to clarify its spatiotemporal dynamics of invasion. Therefore, in this study, we aimed to (a) characterise the genetic structure and diversity and (b) invasion pathways of L. occidentalis populations in the Iberian Peninsula. To do so, specimens of L. occidentalis were collected at fourteen sites widely distributed within the Iberian Peninsula. We used mtDNA sequences of Cytochrome b and eleven microsatellite markers to characterise the genetic diversity and the population structure in the Iberian Peninsula. Our genetic results combined with the observational dates strongly support a stratified expansion of L. occidentalis invasion in the Iberian Peninsula proceeding from multiple introductions, including at least one in Barcelona, one in Valencia, and one in the west coast or in the Southeastern region.Ana Farinha received support from Fundação para a Ciência e a Tecnologia I.P. (FCT-MCES) through a PhD scholarship (PD/BD/52403/2013). Manuela Branco is supported by the Forest Research Centre (CEF) (UIDB/00239/2020) and the Laboratory for Sustainable Land Use and Ecosystem Services—TERRA (LA/P/0092/2020) funded by FCT, Portugal. European Project H2020 “Adaptive breeding for productive, sustainable and resilient forests under climate change” (B4EST; grant agreement No. 773383). Cost action FP1203: European Non-Wood Forest Products Network (NWFPs), European Cooperation in Science and Technology (COST)

    Host plant specialization matters in the epidemiology of Wolbachia across phytophagous wasps (Hymenoptera: Torymidae)

    Get PDF
    Host plant specialization matters in the epidemiology of Wolbachia across phytophagous wasps (Hymenoptera: Torymidae). 8. International Wolbachia Conferenc

    Seven recommendations to make your invasive alien species data more useful

    Get PDF
    Science-based strategies to tackle biological invasions depend on recent, accurate, well-documented, standardized and openly accessible information on alien species. Currently and historically, biodiversity data are scattered in numerous disconnected data silos that lack interoperability. The situation is no different for alien species data, and this obstructs efficient retrieval, combination, and use of these kinds of information for research and policy-making. Standardization and interoperability are particularly important as many alien species related research and policy activities require pooling data. We describe seven ways that data on alien species can be made more accessible and useful, based on the results of a European Cooperation in Science and Technology (COST) workshop: (1) Create data management plans; (2) Increase interoperability of information sources; (3) Document data through metadata; (4) Format data using existing standards; (5) Adopt controlled vocabularies; (6) Increase data availability; and (7) Ensure long-term data preservation. We identify four properties specific and integral to alien species data (species status, introduction pathway, degree of establishment, and impact mechanism) that are either missing from existing data standards or lack a recommended controlled vocabulary. Improved access to accurate, real-time and historical data will repay the long-term investment in data management infrastructure, by providing more accurate, timely and realistic assessments and analyses. If we improve core biodiversity data standards by developing their relevance to alien species, it will allow the automation of common activities regarding data processing in support of environmental policy. Furthermore, we call for considerable effort to maintain, update, standardize, archive, and aggregate datasets, to ensure proper valorization of alien species data and information before they become obsolete or lost

    Forewarned is forearmed : harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings

    Get PDF
    This work was supported by COST Action Global Warning (FP1401). DLM and YB contribution was also supported by the Russian Foundation for Basic Research (Grant No. 17-04-01486). MG was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III43002. MKA was supported by the Ministry of Science and Higher Education of the Republic of Poland. NK was supported by Le Studium foundation (France) and RFBR (Grant No. 19-04-01029). RE, IF and MK contribution was also supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/ for details). IF contribution was further supported through a grant from the Swiss State Secretariat for Science, Education and Research (Grant C15.0081, awarded to RE).Peer reviewedPublisher PD

    Climate, host and geography shape insect and fungal communities of trees.

    Get PDF
    Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate

    Improving models of wood density by including genetic effects : a case study in Douglas-fir

    No full text
    Many models have been published for relating wood characteristics, such as wood density, to growth traits. At a tree population level, ring density is known to be significantly correlated with cambial age and ring width. However, at the individual tree level, the predictive value of models based on this relationship is usually poor, as there is an important, so-called "tree effect"in the residuals of such models. We hypothesise that this effect arises from within population genetic variability, and have tested this hypothesis by adjusting linear models for Douglas-fir populations with different levels of genetic variability, ranging from provenances to clones. The addition of a genetic effect significantly increased the predictive value of the model and decreased the residuals. At the clone level, for example, inclusion of the genetic effect increased the explained variance (adjusted R2 value) from 20% to 54% . It is suggested that most of the observed variability in the wood density/growth relationship of Douglas-fir populations has a genetic origin.De nombreux modèles ont été publiés, mettant en relation chez de nombreuses espèces des propriétés du bois avec des caractères de croissance. À l'échelle de la population d'arbres, on sait que la densité d'un cerne dépend significativement de sa largeur et de son âge cambial. Toutefois, la valeur prédictive de ce type de relation est généralement faible, à cause de l'existence d'un fort effet "arbre "sur les résidus du modèle. Nous proposons l'hypothèse que cet effet arbre est lié à l'existence d'une variabilité génétique intra-population. Nous avons testé cette hypothèse en ajustant un modèle linéaire à plusieurs populations de douglas structurées génétiquement, selon des niveaux génétiques différents variant de la provenance au clone. L'ajout d'un paramètre génétique au modèle permet d'augmenter significativement la qualité prédictive du modèle, et diminue les résidus. Au niveau clone, par exemple, la variance expliquée par le modèle passe de 20 à 54 % . Nous en déduisons que la plus grande partie de la variabilité observée pour la relation densité-croissance chez le Douglas est d'origine génétique

    Modelling the impact of an invasive insect via reaction-diffusion

    No full text
    International audienceAn exotic, specialist seed chalcid, Megastigmus schimitscheki, has been introduced along with its cedar host seeds from Turkey to southeastern France during the early 1990s. It is now expanding in plantations of Atlas Cedar (Cedrus atlantica). We propose a model to predict the expansion and impact of this insect. This model couples a time-discrete equation for the ovo-larval stage with a two-dimensional reaction-diffusion equation for the adult stage, through a formula linking the solution of the reaction-diffusion equation to a seed attack rate. Two main diffusion operators, of Fokker-Planck and Fickian types, are tested. We show that taking account of the dependence of the insect mobility with respect to spatial heterogeneity, and choosing the appropriate diffusion operator, are critical factors for obtaining good predictions

    Direct and Indirect Analysis of the Elevational Shift of Larch Budmoth Outbreaks Along an Elevation Gradient

    No full text
    International audienceLarch budmoth (LBM) periodically defoliates alpine stands of European larch during vast outbreaks occurring generally at 8-10 year intervals. LBM outbreaks recently declined and the ongoing global warming has been pointed out as a possible cause of this decline. In this article, we reconstructed the recent history of LBM outbreaks at different elevations along a larch elevational gradient in the French Alps using direct and indirect observations based on tree-ring width and density analysis, and compared it with local climatic data. We found that LBM outbreaks time-series were better reconstructed with latewood density than with ring width. We also found that there was a recent but limited elevational shift of LBM outbreaks from medium toward higher elevations. We suggest that this elevational shift is a consequence of the variable effect of the global warming at the different elevations. Winter warming is expected to affect differently the timing of LBM egg hatch as well as that of larch bud flush, larvae being at present susceptible to emerge whereas no needles are available as food at the former optimal elevation. A better synchronization between larch and LBM may exist at higher elevations

    Diapause Regulation in Newly Invaded Environments: Termination Timing Allows Matching Novel Climatic Constraints in the Box Tree Moth, Cydalima perspectalis (Lepidoptera: Crambidae)

    Get PDF
    Simple SummaryThe box tree moth, Cydalima perspectalis, is an Asian pest whose rapid invasion in Europe causes considerable economic and ecological impacts. Larvae enter a winter diapause induced by photoperiod in both native and invaded ranges, but factors that trigger the return to an active phase are still unknown. Yet, identifying them is crucial to understanding how diapause end synchronizes with the end of the winter stress encountered in Europe. We tested whether activity resumption is regulated by thermal and/or photoperiodic thresholds, two factors often involved in diapause termination, by exposing diapausing caterpillars from an invaded area to crossed treatments at the laboratory. The evolution of diapause rate was monitored over time and compared to that of nearby field sites invaded. A strong positive effect of increasing temperature was found on the rate and dynamics of diapause termination, whereas no compelling effect of photoperiod appeared. Resuming development directly when main stressors fade, not in response to indirect photoperiodic cues that could be mismatched outside native areas, likely contributes to the good match observed between diapause and the new climates encountered in the invaded range. This finding can improve phenological modelling of the overwintering generation and help better mitigate its damage.The association between indirect environmental cues that modulate insect diapause and the actual stressors is by no means granted when a species encounters new environments. The box tree moth, Cydalima perspectalis, is an Asian pest whose rapid invasion in Europe causes considerable economic and ecological impacts. Larvae enter a winter diapause induced by the photoperiod in both native and invaded ranges, but factors that trigger the return to an active phase are still unknown. Yet, identifying them is crucial to understand how diapause end synchronizes with the end of the winter stress encountered in Europe. To test whether activity resumption is regulated by thermal and/or photoperiodic thresholds, or additive effects between these factors often involved in diapause termination, diapausing caterpillars from an invaded area were exposed to crossed treatments at the laboratory. The evolution of diapause rate was monitored over time and compared to that of nearby field sites invaded. A strong positive effect of increasing temperature was found on the rate and dynamics of diapause termination, whereas no compelling effect of photoperiod appeared. Resuming development directly when main stressors fade, not in response to indirect photoperiodic cues that could be mismatched outside native areas, likely contributes to the good match observed between diapause and the new climates that this pest encountered in the invaded range
    corecore