32 research outputs found

    A fresh look at polymicrobial bloodstream infection in cancer patients

    Get PDF
    Objectives: To assess the current incidence, clinical features, risk factors, aetiology, antimicrobial resistance and outcomes of polymicrobial bloodstream infection (PBSI) in patients with cancer. Methods: All prospectively collected episodes of PBSI in hospitalised patients were compared with episodes of monomicrobial bloodstream infection (MBSI) between 2006 and 2015. Results: We identified 194 (10.2%) episodes of PBSI and 1702 MBSI (89.8%). The presence of cholangitis, biliary stenting, neutropenia, corticosteroids, neutropenic enterocolitis and other abdominal infections were identified as risk factors for PBSI. Overall, Gram-negative organisms were the most frequent aetiology, but Enterococcus spp. were especially frequent causes of Gram-positive PBSI (30.8%). Multidrug-resistant (MDR) organisms were more commonly found in PBSI than in MBSI (20.6% vs 12.9%; p = 0.003). Compared to patients with MBSI, those with PBSI presented with higher early (15% vs 1.4%; p = 0.04) and overall (32% vs 20.9%; p<0.001) case-fatality rates. Risk factors for overall case-fatality were a high-risk MASCC (Multinational Association of Supportive Care in Cancer) index score, corticosteroid use, persistent bacteraemia and septic shock. Conclusions PBSI is a frequent complication in patients with cancer and is responsible for high mortality rates. Physicians should identify patients at risk for PBSI and provide empiric antibiotic therapy that covers the most frequent pathogens involved in these infections, including MDR strains

    Administration of taurolidine-citrate lock solution for prevention of central venous catheter infection in adult neutropenic haematological patients: a randomised, double-blinded, placebo-controlled trial (TAURCAT)

    Get PDF
    Background: Catheter-related bloodstream infection (CRBSI) is one of the most frequent complications in patients with cancer who have central venous catheters (CVCs) implanted and is associated with substantial morbidity and mortality. Taurolidine is a non-antibiotic agent with broad-spectrum antimicrobial activity, which has been used as a lock solution to prevent CRBSI in some settings. However, little is known about its usefulness in high-risk adult neutropenic patients with cancer. This prospective randomised clinical trial aims to test the hypothesis that taurolidine-citrate lock solution is more effective than placebo for preventing catheter infection in neutropenic haematological patients.Methods: This study is a prospective, multicentre, randomised, double-blinded, parallel, superiority, placebo-controlled trial. Patients with haematological cancer who are expected to develop prolonged neutropenia (>7 days) and who have a non-tunnelled CVC implanted will be randomised to receive prophylactic taurolidine-citrate-heparin solution using a lock technique (study group) or heparin alone (placebo group). The primary endpoint will be bacterial colonisation of the CVC hubs. The secondary endpoints will be the incidence of CRBSI, CVC removal, adverse events, and 30-day case-fatality rate.Discussion: The lock technique is a preventive strategy that inhibits bacterial colonisation in the catheter hubs, which is the initial step of endoluminal catheter colonisation and the development of infection. Taurolidine is a nontoxic agent that does not develop antibiotic resistance because it acts as an antiseptic rather than an antibiotic. Taurolidine has shown controversial results in the few trials conducted in cancer patients. These studies have important limitations due to the lack of data on adult and/or high-risk neutropenic patients, the type of catheters studied (tunnelled or ports), and the lack of information regarding the intervention (e.g. dwelling of the solution, time, and periodicity of the lock technique). If our hypothesis is proven, the study could provide important solid evidence on the potential usefulness of this preventive procedure in a population at high risk of CRBSI, in whom this complication may significantly impair patient outcome

    Causes of death in a contemporary cohort of patients with invasive aspergillosis

    Get PDF
    Information regarding the processes leading to death in patients with invasive aspergillosis (IA) is lacking. We sought to determine the causes of death in these patients, the role that IA played in the cause, and the timing of death. The factors associated with IA-related mortality are also analyzed. We conducted a multicenter study (2008-2011) of cases of proven and probable IA. The causes of death and whether mortality was judged to be IA-related or IA-unrelated were determined by consensus using a six-member review panel. A multivariate analysis was performed to determine risk factors for IA-related death. Of 152 patients with IA, 92 (60.5%) died. Mortality was judged to be IA-related in 62 cases and IA-unrelated in 30. The most common cause of IA-related death was respiratory failure (50/62 patients), caused primarily by Aspergillus infection, although also by concomitant infections or severe comorbidities. Progression of underlying disease and bacteremic shock were the most frequent causes of IA-unrelated death. IA-related mortality accounted for 98% and 87% of deaths within the first 14 and 21 days, respectively. Liver disease (HR 4.54; 95% CI, 1.69-12.23) was independently associated with IA-related mortality, whereas voriconazole treatment was associated with reduced risk of death (HR 0.43; 95% CI, 0.20-0.93). In conclusion, better management of lung injury after IA diagnosis is the main challenge for physicians to improve IA outcomes. There are significant differences in causes and timing between IA-related and IA-unrelated mortality and these should be considered in future research to assess the quality of IA car

    Pseudomonas aeruginosa bloodstream infections in patients with cancer: differences between patients with hematological malignancies and solid tumors

    Get PDF
    Objectives: To assess the clinical features and outcomes of Pseudomonas aeruginosa bloodstream infection (PA BSI) in neutropenic patients with hematological malignancies (HM) and with solid tumors (ST), and identify the risk factors for 30-day mortality. Methods: We performed a large multicenter, retrospective cohort study including onco-hematological neutropenic patients with PA BSI conducted across 34 centers in 12 countries (January 2006-May 2018). Episodes occurring in hematologic patients were compared to those developing in patients with ST. Risk factors associated with 30-day mortality were investigated in both groups. Results: Of 1217 episodes of PA BSI, 917 occurred in patients with HM and 300 in patients with ST. Hematological patients had more commonly profound neutropenia (0.1 × 109 cells/mm) (67% vs. 44.6%; p &lt; 0.001), and a high risk Multinational Association for Supportive Care in Cancer (MASCC) index score (32.2% vs. 26.7%; p = 0.05). Catheter-infection (10.7% vs. 4.7%; p = 0.001), mucositis (2.4% vs. 0.7%; p = 0.042), and perianal infection (3.6% vs. 0.3%; p = 0.001) predominated as BSI sources in the hematological patients, whereas pneumonia (22.9% vs. 33.7%; p &lt; 0.001) and other abdominal sites (2.8% vs. 6.3%; p = 0.006) were more common in patients with ST. Hematological patients had more frequent BSI due to multidrug-resistant P. aeruginosa (MDRPA) (23.2% vs. 7.7%; p &lt; 0.001), and were more likely to receive inadequate initial antibiotic therapy (IEAT) (20.1% vs. 12%; p &lt; 0.001). Patients with ST presented more frequently with septic shock (45.8% vs. 30%; p &lt; 0.001), and presented worse outcomes, with increased 7-day (38% vs. 24.2%; p &lt; 0.001) and 30-day (49% vs. 37.3%; p &lt; 0.001) case-fatality rates. Risk factors for 30-day mortality in hematologic patients were high risk MASCC index score, IEAT, pneumonia, infection due to MDRPA, and septic shock. Risk factors for 30-day mortality in patients with ST were high risk MASCC index score, IEAT, persistent BSI, and septic shock. Therapy with granulocyte colony-stimulating factor was associated with survival in both groups. Conclusions: The clinical features and outcomes of PA BSI in neutropenic cancer patients showed some differences depending on the underlying malignancy. Considering these differences and the risk factors for mortality may be useful to optimize their therapeutic management. Among the risk factors associated with overall mortality, IEAT and the administration of granulocyte colony-stimulating factor were the only modifiable variables.Funding: This study was supported by the Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC) (CB21/13/00009; CB21/13/00079; CB21/13/00054; CB21/13/00086), Madrid, Spain. Acknowledgments: We thank the ESCMID Study Group for Bloodstream Infections, Endocarditis, and Sepsis (ESGBIES) and the ESCMID Study Group for Immunocompromised Hosts (ESGICH) for supporting the study. We thank the Centres de Recerca de Catalunya (CERCA) Program and Generalitat de Catalunya for the institutional support. We thank the Spanish Network for Research in Infectious Diseases and the Río Hortega program of the Instituto de Salud Carlos III for the financial support of pre-doctoral student J. Laporte-Amargós and A. Bergas

    Clinical efficacy of β-lactam/β-lactamase inhibitor combinations for the treatment of bloodstream infection due to extended-spectrum β-lactamase-producing Enterobacteriaceae in haematological patients with neutropaenia: a study protocol for a retrospective observational study (BICAR)

    Get PDF
    Introduction: Bloodstream infection (BSI) due to extended-spectrum β-lactamase-producing Gram-negative bacilli (ESBL-GNB) is increasing at an alarming pace worldwide. Although β-lactam/β-lactamase inhibitor (BLBLI) combinations have been suggested as an alternative to carbapenems for the treatment of BSI due to these resistant organisms in the general population, their usefulness for the treatment of BSI due to ESBL-GNB in haematological patients with neutropaenia is yet to be elucidated. The aim of the BICAR study is to compare the efficacy of BLBLI combinations with that of carbapenems for the treatment of BSI due to an ESBL-GNB in this population. Methods and analysis: A multinational, multicentre, observational retrospective study. Episodes of BSI due to ESBL-GNB occurring in haematological patients and haematopoietic stem cell transplant recipients with neutropaenia from 1 January 2006 to 31 March 2015 will be analysed. The primary end point will be case-fatality rate within 30 days of onset of BSI. The secondary end points will be 7-day and 14-day case-fatality rates, microbiological failure, colonisation/infection by resistant bacteria, superinfection, intensive care unit admission and development of adverse events. Sample size: The number of expected episodes of BSI due to ESBL-GNB in the participant centres will be 260 with a ratio of control to experimental participants of 2. Ethics and dissemination: The protocol of the study was approved at the first site by the Research Ethics Committee (REC) of Hospital Universitari de Bellvitge. Approval will be also sought from all relevant RECs. Any formal presentation or publication of data from this study will be considered as a joint publication by the participating investigators and will follow the recommendations of the International Committee of Medical Journal Editors (ICMJE). The study has been endorsed by the European Study Group for Bloodstream Infection and Sepsis (ESGBIS) and the European Study Group for Infections in Compromised Hosts (ESGICH)

    Pseudomonas aeruginosa Bloodstream Infections in Patients with Cancer: Differences between Patients with Hematological Malignancies and Solid Tumors

    Get PDF
    Objectives: To assess the clinical features and outcomes of Pseudomonas aeruginosa bloodstream infection (PA BSI) in neutropenic patients with hematological malignancies (HM) and with solid tumors (ST), and identify the risk factors for 30-day mortality. Methods: We performed a large multicenter, retrospective cohort study including onco-hematological neutropenic patients with PA BSI conducted across 34 centers in 12 countries (January 2006-May 2018). Episodes occurring in hematologic patients were compared to those developing in patients with ST. Risk factors associated with 30-day mortality were investigated in both groups. Results: Of 1217 episodes of PA BSI, 917 occurred in patients with HM and 300 in patients with ST. Hematological patients had more commonly profound neutropenia (0.1 x 10(9) cells/mm) (67% vs. 44.6%; p < 0.001), and a high risk Multinational Association for Supportive Care in Cancer (MASCC) index score (32.2% vs. 26.7%; p = 0.05). Catheter-infection (10.7% vs. 4.7%; p = 0.001), mucositis (2.4% vs. 0.7%; p = 0.042), and perianal infection (3.6% vs. 0.3%; p = 0.001) predominated as BSI sources in the hematological patients, whereas pneumonia (22.9% vs. 33.7%; p < 0.001) and other abdominal sites (2.8% vs. 6.3%; p = 0.006) were more common in patients with ST. Hematological patients had more frequent BSI due to multidrug-resistant P. aeruginosa (MDRPA) (23.2% vs. 7.7%; p < 0.001), and were more likely to receive inadequate initial antibiotic therapy (IEAT) (20.1% vs. 12%; p < 0.001). Patients with ST presented more frequently with septic shock (45.8% vs. 30%; p < 0.001), and presented worse outcomes, with increased 7-day (38% vs. 24.2%; p < 0.001) and 30-day (49% vs. 37.3%; p < 0.001) case-fatality rates. Risk factors for 30-day mortality in hematologic patients were high risk MASCC index score, IEAT, pneumonia, infection due to MDRPA, and septic shock. Risk factors for 30-day mortality in patients with ST were high risk MASCC index score, IEAT, persistent BSI, and septic shock. Therapy with granulocyte colony-stimulating factor was associated with survival in both groups. Conclusions: The clinical features and outcomes of PA BSI in neutropenic cancer patients showed some differences depending on the underlying malignancy. Considering these differences and the risk factors for mortality may be useful to optimize their therapeutic management. Among the risk factors associated with overall mortality, IEAT and the administration of granulocyte colony-stimulating factor were the only modifiable variables

    Pseudomonas aeruginosa bloodstream infections in patients with cancer: Differences between patients with hematological malignancies and solid tumors

    No full text
    Objectives: To assess the clinical features and outcomes of Pseudomonas aeruginosa bloodstream infection (PA BSI) in neutropenic patients with hematological malignancies (HM) and with solid tumors (ST), and identify the risk factors for 30-day mortality. Methods: We performed a large multicenter, retrospective cohort study including onco-hematological neutropenic patients with PA BSI conducted across 34 centers in 12 countries (January 2006−May 2018). Episodes occurring in hematologic patients were compared to those developing in patients with ST. Risk factors associated with 30-day mortality were investigated in both groups. Results: Of 1217 episodes of PA BSI, 917 occurred in patients with HM and 300 in patients with ST. Hematological patients had more commonly profound neutropenia (0.1 × 109 cells/mm) (67% vs. 44.6%; p < 0.001), and a high risk Multinational Association for Supportive Care in Cancer (MASCC) index score (32.2% vs. 26.7%; p = 0.05). Catheter-infection (10.7% vs. 4.7%; p = 0.001), mucositis (2.4% vs. 0.7%; p = 0.042), and perianal infection (3.6% vs. 0.3%; p = 0.001) predominated as BSI sources in the hematological patients, whereas pneumonia (22.9% vs. 33.7%; p < 0.001) and other abdominal sites (2.8% vs. 6.3%; p = 0.006) were more common in patients with ST. Hematological patients had more frequent BSI due to multidrug-resistant P. aeruginosa (MDRPA) (23.2% vs. 7.7%; p < 0.001), and were more likely to receive inadequate initial antibiotic therapy (IEAT) (20.1% vs. 12%; p < 0.001). Patients with ST presented more frequently with septic shock (45.8% vs. 30%; p < 0.001), and presented worse outcomes, with increased 7-day (38% vs. 24.2%; p < 0.001) and 30-day (49% vs. 37.3%; p < 0.001) case-fatality rates. Risk factors for 30-day mortality in hematologic patients were high risk MASCC index score, IEAT, pneumonia, infection due to MDRPA, and septic shock. Risk factors for 30-day mortality in patients with ST were high risk MASCC index score, IEAT, persistent BSI, and septic shock. Therapy with granulocyte colony-stimulating factor was associated with survival in both groups. Conclusions: The clinical features and outcomes of PA BSI in neutropenic cancer patients showed some differences depending on the underlying malignancy. Considering these differences and the risk factors for mortality may be useful to optimize their therapeutic management. Among the risk factors associated with overall mortality, IEAT and the administration of granulocyte colony-stimulating factor were the only modifiable variables

    A fresh look at polymicrobial bloodstream infection in cancer patients.

    No full text
    To assess the current incidence, clinical features, risk factors, aetiology, antimicrobial resistance and outcomes of polymicrobial bloodstream infection (PBSI) in patients with cancer.All prospectively collected episodes of PBSI in hospitalised patients were compared with episodes of monomicrobial bloodstream infection (MBSI) between 2006 and 2015.We identified 194 (10.2%) episodes of PBSI and 1702 MBSI (89.8%). The presence of cholangitis, biliary stenting, neutropenia, corticosteroids, neutropenic enterocolitis and other abdominal infections were identified as risk factors for PBSI. Overall, Gram-negative organisms were the most frequent aetiology, but Enterococcus spp. were especially frequent causes of Gram-positive PBSI (30.8%). Multidrug-resistant (MDR) organisms were more commonly found in PBSI than in MBSI (20.6% vs 12.9%; p = 0.003). Compared to patients with MBSI, those with PBSI presented with higher early (15% vs 1.4%; p = 0.04) and overall (32% vs 20.9%; p<0.001) case-fatality rates. Risk factors for overall case-fatality were a high-risk MASCC (Multinational Association of Supportive Care in Cancer) index score, corticosteroid use, persistent bacteraemia and septic shock.PBSI is a frequent complication in patients with cancer and is responsible for high mortality rates. Physicians should identify patients at risk for PBSI and provide empiric antibiotic therapy that covers the most frequent pathogens involved in these infections, including MDR strains

    A fresh look at polymicrobial bloodstream infection in cancer patients

    No full text
    Objectives: To assess the current incidence, clinical features, risk factors, aetiology, antimicrobial resistance and outcomes of polymicrobial bloodstream infection (PBSI) in patients with cancer. Methods: All prospectively collected episodes of PBSI in hospitalised patients were compared with episodes of monomicrobial bloodstream infection (MBSI) between 2006 and 2015. Results: We identified 194 (10.2%) episodes of PBSI and 1702 MBSI (89.8%). The presence of cholangitis, biliary stenting, neutropenia, corticosteroids, neutropenic enterocolitis and other abdominal infections were identified as risk factors for PBSI. Overall, Gram-negative organisms were the most frequent aetiology, but Enterococcus spp. were especially frequent causes of Gram-positive PBSI (30.8%). Multidrug-resistant (MDR) organisms were more commonly found in PBSI than in MBSI (20.6% vs 12.9%; p = 0.003). Compared to patients with MBSI, those with PBSI presented with higher early (15% vs 1.4%; p = 0.04) and overall (32% vs 20.9%; p<0.001) case-fatality rates. Risk factors for overall case-fatality were a high-risk MASCC (Multinational Association of Supportive Care in Cancer) index score, corticosteroid use, persistent bacteraemia and septic shock. Conclusions PBSI is a frequent complication in patients with cancer and is responsible for high mortality rates. Physicians should identify patients at risk for PBSI and provide empiric antibiotic therapy that covers the most frequent pathogens involved in these infections, including MDR strains

    A fresh look at polymicrobial bloodstream infection in cancer patients

    No full text
    Objectives: To assess the current incidence, clinical features, risk factors, aetiology, antimicrobial resistance and outcomes of polymicrobial bloodstream infection (PBSI) in patients with cancer. Methods: All prospectively collected episodes of PBSI in hospitalised patients were compared with episodes of monomicrobial bloodstream infection (MBSI) between 2006 and 2015. Results: We identified 194 (10.2%) episodes of PBSI and 1702 MBSI (89.8%). The presence of cholangitis, biliary stenting, neutropenia, corticosteroids, neutropenic enterocolitis and other abdominal infections were identified as risk factors for PBSI. Overall, Gram-negative organisms were the most frequent aetiology, but Enterococcus spp. were especially frequent causes of Gram-positive PBSI (30.8%). Multidrug-resistant (MDR) organisms were more commonly found in PBSI than in MBSI (20.6% vs 12.9%; p = 0.003). Compared to patients with MBSI, those with PBSI presented with higher early (15% vs 1.4%; p = 0.04) and overall (32% vs 20.9%; p<0.001) case-fatality rates. Risk factors for overall case-fatality were a high-risk MASCC (Multinational Association of Supportive Care in Cancer) index score, corticosteroid use, persistent bacteraemia and septic shock. Conclusions PBSI is a frequent complication in patients with cancer and is responsible for high mortality rates. Physicians should identify patients at risk for PBSI and provide empiric antibiotic therapy that covers the most frequent pathogens involved in these infections, including MDR strains
    corecore