582 research outputs found

    Cohomological tautness for Riemannian foliations

    Full text link
    In this paper we present some new results on the tautness of Riemannian foliations in their historical context. The first part of the paper gives a short history of the problem. For a closed manifold, the tautness of a Riemannian foliation can be characterized cohomologically. We extend this cohomological characterization to a class of foliations which includes the foliated strata of any singular Riemannian foliation of a closed manifold

    Growth of carbonaceous nanomaterials over stainless steel foams. Effect of activation temperature

    Get PDF
    Some of the problems that occur during the operation of chemical reactors based of structured catalytic substrates, as monoliths, foams, membranes, cloths, fibres and other systems, are related to the preparation of long term stable coatings. Frequently, the deposition of the catalytic layer is carried out by washcoating, requiring this step a cautious attention, especially in the case of complex geometries, like of that of foams or cloths. In the case of the deposition of layers of carbonaceous materials (CNMs), an alternative route, avoiding the washcoating, it is their direct growth by catalytic decomposition light hydrocarbons (also called CCVD), over the surface of the metallic substrate. In this case, if the metallic substrate is of stainless steel, it already contains the catalytic active phases like Fe and Ni. In order to optimize the process of CNMs growth over structured metallic substrates, we are studying the effect of the main operational variables of the ethane decomposition reaction on stainless steel foams. In this contribution we present a study of the influence of the temperature of the activation (oxidation and reduction) stage on the type and morphology of the carbonaceous materials formed. The results obtained allow us to determine the optimal operating conditions to maximize the amount and the selectivity of the process to obtain a given type of CNM

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of \sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review

    Angle-resolved photoemission study and first principles calculation of the electronic structure of GaTe

    Full text link
    The electronic band structure of GaTe has been calculated by numerical atomic orbitals density-functional theory, in the local density approximation. In addition, the valence-band dispersion along various directions of the GaTe Brillouin zone has been determined experimentally by angle-resolved photoelectron spectroscopy. Along these directions, the calculated valence-band structure is in good concordance with the valence-band dispersion obtained by these measurements. It has been established that GaTe is a direct-gap semiconductor with the band gap located at the Z point, that is, at Brillouin zone border in the direction perpendicular to the layers. The valence-band maximum shows a marked \textit{p}-like behavior, with a pronounced anion contribution. The conduction band minimum arises from states with a comparable \textit{s}- \textit{p}-cation and \textit{p}-anion orbital contribution. Spin-orbit interaction appears to specially alter dispersion and binding energy of states of the topmost valence bands lying at Γ\Gamma. By spin-orbit, it is favored hybridization of the topmost \textit{p}z_z-valence band with deeper and flatter \textit{px_x}-\textit{py_y} bands and the valence-band minimum at Γ\Gamma is raised towards the Fermi level since it appears to be determined by the shifted up \textit{px_x}-\textit{py_y} bands.Comment: 7 text pages, 6 eps figures, submitted to PR

    Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire

    Get PDF
    Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the AlAs shell effectively getters residual carbon acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1~nm GaAs layer in the shell. Micro-photoluminescence in high magnetic field shows a clear signature of avoided crossings of the n=0n=0 Landau level emission line with the n=2n=2 Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters (http://pubs.acs.org/doi/full/10.1021/nl500818k

    Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning

    Get PDF
    The effective and non-invasive diagnosis of skin cancer is a hot topic, since biopsy is a costly and time-consuming surgical procedure. As skin relief is an important biophysical feature that can be difficult to perceive with the naked eye and by touch, we developed a novel 3D imaging scanner based on fringe projection to obtain morphological parameters of skin lesions related to perimeter, area and volume with micrometric precision We measured 608 samples and significant morphological differences were found between melanomas and nevi (p<0.001). The capacity: of the 3D scanner to distinguish these lesions was supported by a supervised machine learning algorithm resulting in 80.0% sensitivity: and 76.7% specificity. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Tautness for riemannian foliations on non-compact manifolds

    Full text link
    For a riemannian foliation F\mathcal{F} on a closed manifold MM, it is known that F\mathcal{F} is taut (i.e. the leaves are minimal submanifolds) if and only if the (tautness) class defined by the mean curvature form κμ\kappa_\mu (relatively to a suitable riemannian metric μ\mu) is zero. In the transversally orientable case, tautness is equivalent to the non-vanishing of the top basic cohomology group Hn(M/F)H^{^{n}}(M/\mathcal{F}), where n = \codim \mathcal{F}. By the Poincar\'e Duality, this last condition is equivalent to the non-vanishing of the basic twisted cohomology group Hκμ0(M/F)H^{^{0}}_{_{\kappa_\mu}}(M/\mathcal{F}), when MM is oriented. When MM is not compact, the tautness class is not even defined in general. In this work, we recover the previous study and results for a particular case of riemannian foliations on non compact manifolds: the regular part of a singular riemannian foliation on a compact manifold (CERF).Comment: 18 page

    Loop Groups, Kaluza-Klein Reduction and M-Theory

    Full text link
    We show that the data of a principal G-bundle over a principal circle bundle is equivalent to that of a \hat{LG} = U(1) |x LG bundle over the base of the circle bundle. We apply this to the Kaluza-Klein reduction of M-theory to IIA and show that certain generalized characteristic classes of the loop group bundle encode the Bianchi identities of the antisymmetric tensor fields of IIA supergravity. We further show that the low dimensional characteristic classes of the central extension of the loop group encode the Bianchi identities of massive IIA, thereby adding support to the conjectures of hep-th/0203218.Comment: 26 pages, LaTeX, utarticle.cls, v2:clarifications and refs adde

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)

    Full text link
    Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates at room temperature. Their electronic properties have been studied by using angle resolved photoelectron spectroscopy (ARPES). In addition to the electronic band dispersion along the high-symmetry directions, the Fermi surface topology of the grown films has been investigated. Using ARPES, the spectral weight distribution at the Fermi level throughout large portions of the reciprocal space has been determined at particular perpendicular electron-momentum values. Systematically, the contours of the Fermi surface of these films reflected a sixfold symmetry instead of the threefold symmetry of Ag single crystal. This loss of symmetry has been attributed to the fact that these films appear to be composed by two sets of domains rotated 60o^o from each other. Extra, photoemission features at the Fermi level were also detected, which have been attributed to the presence of surface states and \textit{sp}-quantum states. The dimensionality of the Fermi surface of these films has been analyzed studying the dependence of the Fermi surface contours with the incident photon energy. The behavior of these contours measured at particular points along the Ag Γ\GammaL high-symmetry direction puts forward the three-dimensional character of the electronic structure of the films investigated.Comment: 10 pages, 12 figures, submitted to Physical Review
    corecore