200 research outputs found

    Chaos and isospin symmetry breaking in rotational nuclei

    Full text link
    For nuclei with N = Z, the isospin degree of freedom is important and, for deformed systems, rotational bands of different isospin may be expected at low excitation energies. We have investigated, in a simple model space, the influence of the isospin-breaking Coulomb interaction on the degree of chaoticity of these rotational bands. The statistical measures used rely on an analysis of level-spacing distributions, which are extremely difficult to measure experimentally. We show, however, that the overlap intergrals between states of similar frequency reflect well the degree of chaoticity. This quantity is closely related to the experimentally more accessible gamma-decay ``spreading width''.Comment: 13 pages, 9 figures, Elsevie

    Acute and longer-term cardiovascular conditions in the Deepwater Horizon Oil Spill Coast Guard Cohort

    Get PDF
    Introduction: In 2010, the U.S. Coast Guard (USCG) led a clean-up response to the Deepwater Horizon (DWH) oil spill. Human studies evaluating acute and longer-term cardiovascular conditions associated with oil spill-related exposures are sparse. Thus, we aimed to investigate prevalent and incident cardiovascular symptoms/conditions in the DHW Oil Spill Coast Guard Cohort. Methods: Self-reported oil spill exposures and cardiovascular symptoms were ascertained from post-deployment surveys (n = 4,885). For all active-duty cohort members (n = 45,193), prospective cardiovascular outcomes were classified via International Classification of Diseases, 9th Edition from military health encounter records up to 5.5 years post-DWH. We used log-binomial regression to calculate adjusted prevalence ratios (aPRs) and 95% confidence intervals (CIs) in the cross-sectional analyses and Cox Proportional Hazards regression to calculate adjusted hazard ratios (aHR) and 95% CIs for incident cardiovascular diagnoses during 2010–2015 and stratifying by earlier (2010–2012) and later (2013–2015) time periods. Results: Prevalence of chest pain was associated with increasing levels of crude oil exposure via inhalation (aPRhigh vs. none = 2.00, 95% CI = 1.16–3.42, p-trend = 0.03) and direct skin contact (aPRhigh vs. none = 2.72, 95% CI = 1.30–5.16, p-trend = 0.03). Similar associations were observed for sudden heartbeat changes and for being in the vicinity of burning oil exposure. In prospective analyses, responders (vs. non-responders) had an elevated risk for mitral valve disorders during 2013–2015 (aHR = 2.12, 95% CI = 1.15–3.90). Responders reporting ever (vs. never) crude oil inhalation exposure were at increased risk for essential hypertension, particularly benign essential hypertension during 2010–2012 (aHR = 2.00, 95% CI = 1.08–3.69). Responders with crude oil inhalation exposure also had an elevated risk for palpitations during 2013–2015 (aHR = 2.54, 95% CI = 1.36–4.74). Cardiovascular symptoms/conditions aPR and aHR estimates were generally stronger among responders reporting exposure to both crude oil and oil dispersants than among those reporting neither. Conclusions: In this large study of the DWH oil spill USCG responders, self-reported spill clean-up exposures were associated with acute and longer-term cardiovascular symptoms/conditions

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe

    Prostate cancer and Hedgehog signalling pathway

    Get PDF
    [Abstract] The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring

    The New Look pMSSM with Neutralino and Gravitino LSPs

    Full text link
    The pMSSM provides a broad perspective on SUSY phenomenology. In this paper we generate two new, very large, sets of pMSSM models with sparticle masses extending up to 4 TeV, where the lightest supersymmetric particle (LSP) is either a neutralino or gravitino. The existence of a gravitino LSP necessitates a detailed study of its cosmological effects and we find that Big Bang Nucleosynthesis places strong constraints on this scenario. Both sets are subjected to a global set of theoretical, observational and experimental constraints resulting in a sample of \sim 225k viable models for each LSP type. The characteristics of these two model sets are briefly compared. We confront the neutralino LSP model set with searches for SUSY at the 7 TeV LHC using both the missing (MET) and non-missing ET ATLAS analyses. In the MET case, we employ Monte Carlo estimates of the ratios of the SM backgrounds at 7 and 8 TeV to rescale the 7 TeV data-driven ATLAS backgrounds to 8 TeV. This allows us to determine the pMSSM parameter space coverage for this collision energy. We find that an integrated luminosity of \sim 5-20 fb^{-1} at 8 TeV would yield a substantial increase in this coverage compared to that at 7 TeV and can probe roughly half of the model set. If the pMSSM is not discovered during the 8 TeV run, then our model set will be essentially void of gluinos and lightest first and second generation squarks that are \lesssim 700-800 GeV, which is much less than the analogous mSUGRA bound. Finally, we demonstrate that non-MET SUSY searches continue to play an important role in exploring the pMSSM parameter space. These two pMSSM model sets can be used as the basis for investigations for years to come.Comment: 54 pages, 22 figures; typos fixed, references adde

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Rapid and highly variable warming of lake surface waters around the globe

    Full text link
    peer reviewedIn this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade-1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors - from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade-1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade-1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes. © 2015. American Geophysical Union. All Rights Reserved

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    Peer reviewed. ©2015. The Authors.This is an open access article under theterms of the Creative CommonsAttribution-NonCommercial-N oDerivsLicense, which permits use and distri-bution in any medium, provided theoriginal work is properly cited, the use isnon-commerc ial and no modificationsor adaptations are made.In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade 1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors —from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade 1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade 1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes
    corecore