19 research outputs found

    PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUS(R521G), harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS

    Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020

    Get PDF
    During the main COVID-19 global pandemic lockdown period of 2020 an impromptu set of pollination ecologists came together via social media and personal contacts to carry out standardised surveys of the flower visits and plants in gardens. The surveys involved 67 rural, suburban and urban gardens, of various sizes, ranging from 61.18° North in Norway to 37.96° South in Australia, resulting in a data set of 25,174 rows, with each row being a unique interaction record for that date/site/plant species, and comprising almost 47,000 visits to flowers, as well as records of flowers that were not visited by pollinators, for over 1,000 species and varieties belonging to more than 460genera and 96plant families. The more than 650 species of flower visitors belong to 12 orders of invertebrates and four of vertebrates. In this first publication from the project, we present a brief description of the data and make it freely available for any researchers to use in the future, the only restriction being that they cite this paper in the first instance. The data generated from these global surveys will provide scientific evidence to help us understand the role that private gardens (in urban, rural and suburban areas) can play in conserving insect pollinators and identify management actions to enhance their potential

    Quantifying the food requirements and effects of food stress on bumble bee colony development

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordThere is another ORE record for this publication: http://hdl.handle.net/10871/28957Agricultural intensification has led to a reduction in semi-natural areas and in the abundance of wild flowering plants, reducing the availability of floral resources upon which pollinating insects depend. This is widely accepted as one of the major drivers of pollinator declines, but few studies have directly addressed the effects of dietary restrictions on pollinator fitness. Here, we investigated the effects of restricting pollen and nectar supply on bumble bee (Bombus terrestris) colony growth, adult size and number. Colonies required up to 6 g pollen/1 g protein and 50 g sugar to establish a colony of 5 workers, and consumed in excess of 176 g pollen/31 g protein and 1,186 g sugar in their lifetime. Regardless of restrictions on pollen or nectar availability, colonies consumed a ratio of 1 g protein to ~43 g sugar, though free-flying colonies require proportionally more sugar to fuel foraging. Food-limited colonies from an early stage grew little with anything less than ad-lib nectar, while more-established colonies increased in weight even with low levels of nectar suggesting a shortage of resources in early spring may be most damaging to bumble bee colonies. Dietary restriction reduced the number of reproductives produced, but had variable effects on the size of workers and males. Nosema ceranae infection was included as a covariate in analyses and had a significant negative effect on colony growth. This study provides a base line for the developmental requirements of bumble bee colonies, and indicates the effects a resource deficit may have on their development and reproduction.This research was funded as part of a Biotechnology and Biological Sciences Research Council (GB) project [grant numbers BB/J014753/1, BB/J014915/1]

    Mark recapture estimates of dispersal ability and observations on the territorial behaviour of the rare hoverfly, Hammerschmidtia ferruginea (Diptera, Syrphidae)

    No full text
    In order to effectively manage habitat for fragmented populations, we need to know details of resource utilisation, and the capacity of species to colonise unoccupied habitat patches. Dispersal is vital in maintaining viable populations in increasingly fragmented environments by allowing re-colonisation of areas in which populations have gone extinct. In the UK, the endangered aspen hoverfly Hammerschmidtiaferruginea (Fallén 1817) (Diptera, Syrphidae) depends on a limited and transient breeding habitat: decaying aspen wood Populus tremula L. (Salicaceae). Conservation management for H. ferruginea involves encouraging aspen expansion across Scotland, and ensuring retention, maintenance and continuity of dead wood where H. ferruginea has been recorded and in areas that may link populations. In order to do this effectively we need to know how far H. ferruginea can disperse. By taking advantage of the tendency of adults to group on decaying aspen logs, we estimated dispersal ability through mark recapture techniques. In the first year, 1,066 flies were marked as they emerged from aspen logs and 78 were re-sighted at artificially-placed decaying aspen logs up to 4 km from the release site. In the second year, of 1,157 individually marked flies, 112 were re-sighted and one was observed 5 km from the release site. Territorial behaviour was recorded at all (19) decaying aspen log locations. In total, 72 males were recorded defending territories, which overlapped with 68 % of recorded female oviposition sites. Among males only, wing length was positively associated with dispersal. While these results show H. ferruginea is capable of locating decaying logs up to 5 km away, most dispersing individuals (68 %) were recorded at 1 km, which should be taken into account in developing management protocols. If enough dead wood is available it should be distributed within a radius of 1-2 km, and where possible, as stepping-stones linking up aspen woodlands. We discuss the implications of our findings for the natural history of this species, and make recommendations for its conservation management

    SEM studies on immature stages of the drone flies (diptera, syrphidae): Eristalis similis (Fallen, 1817) and Eristalis tenax (Linnaeus, 1758)

    No full text
    Adult drone flies (Syrphidae: Eristalis spp.) resemble male honeybees in appearance. Their immature stages are commonly known as rat-tailed maggots due to the presence of a very long anal segment and a telescopic breathing tube. The larvae are associated with decaying organic material in liquid or semi-liquid media, as in the case of other saprophagous eristalines. Biological and morphological data were obtained from both laboratory cultures and sampling in the field. Drone flies are important pollinators for wild flowers and crops. In fact, mass rearing protocols of Eristalis species are being developed to be used as efficient alternative pollinators. However, deeper knowledge of larval morphology and biology is required to improve artificial rearing. The production quality control of artificial rearing must manage the consistency and reliability of the production output avoiding, for example contamination with similar species. This article presents the first description of the larva and puparium of E. similis, including a comparative morphological study of preimaginal stages of the anthropophilic and ubiquitous European hoverfly species E. tenax. Scanning electron microscopy has been used for the first time to describe larvae and puparia of both species. Moreover, the preimaginal morphology of E. similis has been compared with all known descriptions of the genus Eristalis. The main diagnostic characters of the preimaginal stages of E. similis are the morphology of the anterior spiracles (shape of clear area and arrangement of facets) and pupal spiracles (length, shape, and arrangement of tubercles)

    Genetic variation and population decline of an endangered hoverfly Blera fallax (Diptera: Syrphidae)

    Full text link
    Genetic diversity is one of several factors affecting extinction risk in vulnerable populations. In addition to informing conservation management strategies, data on genetic variability can also shed light on the recency and magnitude of historic bottlenecks. The pine hoverfly Blera fallax is one of the rarest invertebrates in the UK, known from just two sites in Scotland. It belongs to an often overlooked, species-rich community that is fundamental to forest function, the saproxylics (that depend on dead wood). To assist current conservation management for B. fallax, including captive breeding and translocations, it is important to know whether genetic factors will limit the success of recovery. Using 12 microsatellite loci, we compared the genetic variation in Scottish and Swedish specimens (Swedish populations are thought to represent a more outbred B. fallax population). As expected, the Scottish population showed significantly lower levels of polymorphism, expected heterozygosity and allelic richness than the Swedish population. Furthermore, significant genetic differentiation was found between the two B. fallax populations (FST = 0.134). We then used an allele frequency-based approach and a Bayesian coalescent-based method to assess genealogical history and detect recent changes in population size. Unexpectedly, data from not only the Scottish but also the Swedish population indicated a strong and relatively recent decline that was more pronounced in Scotland. We discuss the implications of our findings for future conservation management planning, the first undertaking of its kind for saproxylic species in Britain
    corecore