724 research outputs found

    Acid geopolymer materials based on different aluminosilicate sources

    Get PDF
    Geopolymers synthetized from the reaction of metakaolin (or alumino-silicate) in an alkali medium are studied since decades [1]. However, in order to develop composites, alkali medium is undesirable due to the detrimental effect of alkali ions on fibers. As an alternative, the use of an acid medium seems promising as some authors demonstrated an increase of mechanical properties with acid-based geopolymers [2, 3]. The aim of this work is to investigate the various formulations and to understand the reactional mechanisms. The work is based on the activation of an alumino-silicate source with phosphoric acid to obtain geopolymer The various formulations consist to determine the Al/P ratio leading to consolidation at various temperatures (from 20 to 70°C). The samples were characterized by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopies and X-Ray Diffraction measurements in order to study their structure. The thermal and mechanical properties were correlated with the microstructure [4]. Consolidated geopolymers were synthetized with different Al/P ratios. The consolidation time decreases with increasing Al/P ratio. For instance, the material realized with Si/Al=1,17 consolidates at 20°C in 15 and 8 days with Al/P=4 and 1, respectively. Tow behaviors can be distinguished samples presenting good fire resistance (Si/Al=1,17 and Al/P=1) or presenting poorly water resistant (Si/Al=1,17 and Al/P=4). Consequently, the impact of the reactivity of the alumino-silicate source on the geopolymerisation kinetics leads to different types of structures (secondary and metastable phases) in relation with the phosphor content. References: [1] J.Davidovits, J. Therm. Anal. 37 (1991) 1633-1656. [2] D. S. Perrera, J Mater Sci, vol. 3, pp. 6562-6566, 2008. [3] H. K. Tchakouté and C. Rüscher, Applied Clay Science, vol. 140, pp. 81-87,2017. [4] H.Celerier and al., under submission

    Characteristics of the tomato chromoplast revealed by proteomic analysis

    Get PDF
    Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism and trafficking were well represented, including all the proteins of the lipoxygenase pathway required for the synthesis of lipid-derived aroma volatiles. Proteins involved in starch synthesis co-existed with several starch-degrading proteins and starch excess proteins. Chromoplasts lacked proteins of the chlorophyll biosynthesis branch and contained proteins involved in chlorophyll degradation. None of the proteins involved in the thylakoid transport machinery were discovered. Surprisingly, chromoplasts contain the entire set of Calvin cycle proteins including Rubisco, as well as the oxidative pentose phosphate pathway (OxPPP). The present proteomic analysis, combined with available physiological data, provides new insights into the metabolic characteristics of the tomato chromoplast and enriches our knowledge of non-photosynthetic plastids

    Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells

    Get PDF
    AbstractPlasma membrane-bound voltage-dependent calcium channels may couple the perception of an initial stimulus to a regulated pathway for calcium influx. The activities of these channels have been shown to be very low and highly unstable but may be recruited by large-predepolarizing pulses, according to a process referred to as recruitment. By combining pharmacological and electrophysiological approaches, we demonstrate in the present paper that the cytoskeleton plays an important role in the regulation of the activity and stability of voltage-dependent calcium channels during whole-cell patch-clamp experiments on carrot protoplasts. Whereas drugs affecting the organization of the microfilament network have no measurable effect, the manipulation of the microtubule network elicits important changes. Thus, the addition of colchicine or oryzalin, which are known to disrupt microtubule organization, leads to a 6–10-fold increase in calcium channel activities and half-life. In contrast, stabilization of the microtubules by taxol has no effect on any of these parameters. The data obtained suggest that interactions of microtubules and voltage-dependent calcium channels by either direct or indirect mechanisms inhibit channel activities and decrease their half-life. In contrast, the disruption of the network overcomes such an inhibitory effect and allows the activation of calcium channels. It is speculated that under normal physiological conditions these protein-protein interactions may work in a reversible manner and contribute to signal transduction in higher plants

    Boolean Models of Biosurfactants Production in Pseudomonas fluorescens

    Get PDF
    Cyclolipopeptides (CLPs) are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene () and not restored by complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained

    Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The N-terminal proline-rich domain (Zera) of the maize storage protein γ-zein, is able to induce the formation of endoplasmic reticulum (ER)-derived protein bodies (PBs) when fused to proteins of interest. This encapsulation enables a recombinant fused protein to escape from degradation and facilitates its recovery from plant biomass by gradient purification. The aim of the present work was to evaluate if induced PBs encapsulate additional proteins jointly with the recombinant protein. The exhaustive analysis of protein composition of PBs is expected to facilitate a better understanding of PB formation and the optimization of recombinant protein purification approaches from these organelles.</p> <p>Results</p> <p>We analysed the proteome of PBs induced in <it>Nicotiana benthamiana </it>leaves by transient transformation with Zera fused to a fluorescent marker protein (DsRed). Intact PBs with their surrounding ER-membrane were isolated on iodixanol based density gradients and their integrity verified by confocal and electron microscopy. SDS-PAGE analysis of isolated PBs showed that Zera-DsRed accounted for around 85% of PB proteins in term of abundance. Differential extraction of PBs was performed for in-depth analysis of their proteome and structure. Besides Zera-DsRed, 195 additional proteins were identified including a broad range of proteins resident or trafficking through the ER and recruited within the Zera-DsRed polymer.</p> <p>Conclusions</p> <p>This study indicates that Zera-protein fusion is still the major protein component of the new formed organelle in tobacco leaves. The analysis also reveals the presence of an unexpected diversity of proteins in PBs derived from both the insoluble Zera-DsRed polymer formation, including ER-resident and secretory proteins, and a secretory stress response induced most likely by the recombinant protein overloading. Knowledge of PBs protein composition is likely to be useful to optimize downstream purification of recombinant proteins in molecular farming applications.</p

    Exocytosis and protein secretion in Trypanosoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human African trypanosomiasis is a lethal disease caused by the extracellular parasite <it>Trypanosoma brucei</it>. The proteins secreted by <it>T. brucei </it>inhibit the maturation of dendritic cells and their ability to induce lymphocytic allogenic responses. To better understand the pathogenic process, we combined different approaches to characterize these secreted proteins.</p> <p>Results</p> <p>Overall, 444 proteins were identified using mass spectrometry, the largest parasite secretome described to date. Functional analysis of these proteins revealed a strong bias toward folding and degradation processes and to a lesser extent toward nucleotide metabolism. These features were shared by different strains of <it>T. brucei</it>, but distinguished the secretome from published <it>T. brucei </it>whole proteome or glycosome. In addition, several proteins had not been previously described in <it>Trypanosoma </it>and some constitute novel potential therapeutic targets or diagnostic markers. Interestingly, a high proportion of these secreted proteins are known to have alternative roles once secreted. Furthermore, bioinformatic analysis showed that a significant proportion of proteins in the secretome lack transit peptide and are probably not secreted through the classical sorting pathway. Membrane vesicles from secretion buffer and infested rat serum were purified on sucrose gradient and electron microscopy pictures have shown 50- to 100-nm vesicles budding from the coated plasma membrane. Mass spectrometry confirmed the presence of <it>Trypanosoma </it>proteins in these microvesicles, showing that an active exocytosis might occur beyond the flagellar pocket.</p> <p>Conclusions</p> <p>This study brings out several unexpected features of the secreted proteins and opens novel perspectives concerning the survival strategy of <it>Trypanosoma </it>as well as possible ways to control the disease. In addition, concordant lines of evidence support the original hypothesis of the involvement of microvesicle-like bodies in the survival strategy allowing <it>Trypanosoma </it>to exchange proteins at least between parasites and/or to manipulate the host immune system.</p

    Excreted/Secreted Proteins from Trypanosome Procyclic Strains

    Get PDF
    Trypanosoma secretome was shown to be involved in parasite virulence and is suspected of interfering in parasite life-cycle steps such as establishment in the Glossina midgut, metacyclogenesis. Therefore, we attempted to identify the proteins secreted by procyclic strains of T. brucei gambiense and T. brucei brucei, responsible for human and animal trypanosomiasis, respectively. Using mass spectrometry, 427 and 483 nonredundant proteins were characterized in T. brucei brucei and T. brucei gambiense secretomes, respectively; 35% and 42% of the corresponding secretome proteins were specifically secreted by T. brucei brucei and T. brucei gambiense, respectively, while 279 proteins were common to both subspecies. The proteins were assigned to 12 functional classes. Special attention was paid to the most abundant proteases (14 families) because of their potential implication in the infection process and nutrient supply. The presence of proteins usually secreted via an exosome pathway suggests that this type of process is involved in trypanosome ESP secretion. The overall results provide leads for further research to develop novel tools for blocking trypanosome transmission
    corecore