50 research outputs found

    Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli

    Full text link
    The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys' decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choiceThis work was supported in part by the Dirección de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México and Consejo Nacional de Ciencia y Tecnología (R.R.) and Grant FIS2015-67876-P (to N.P.

    Independent position correction on tumor and lymph nodes; consequences for bladder cancer irradiation with two combined IMRT plans

    Get PDF
    Abstract Background The application of lipiodol injections as markers around bladder tumors combined with the use of CBCT for image guidance enables daily on-line position correction based on the position of the bladder tumor. However, this might introduce the risk of underdosing the pelvic lymph nodes. In this study several correction strategies were compared. Methods For this study set-up errors and tumor displacements for ten complete treatments were generated; both were based on the data of 10 bladder cancer patients. Besides, two IMRT plans were made for 20 patients, one for the elective field and a boost plan for the tumor. For each patient 10 complete treatments were simulated. For each treatment the dose was calculated without position correction (option 1), correction on bony anatomy (option 2), on tumor only (option 3) and separately on bone for the elective field (option 4). For each method we analyzed the D99% for the tumor, bladder and lymph nodes and the V95% for the small intestines, rectum, healthy part of the bladder and femoral heads. Results CTV coverage was significantly lower with options 1 and 2. With option 3 the tumor coverage was not significantly different from the treatment plan. The ΔD99% (D99%, option n - D99%, treatment plan) for option 4 was small, but significant. For the lymph nodes the results from option 1 differed not significantly from the treatment plan. The median ΔD99% of the other options were small, but significant. ΔD99% for PTVbladder was small for options 1, 2 and 4, but decreased up to -8.5 Gy when option 3 was applied. Option 4 is the only method where the difference with the treatment plan never exceeds 2 Gy. The V95% for the rectum, femoral heads and small intestines was small in the treatment plan and this remained so after applying the correction options, indicating that no additional hot spots occurred. Conclusions Applying independent position correction on bone for the elective field and on tumor for the boost separately gives on average the best target coverage, without introducing additional hot spots in the healthy tissue.</p

    Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area

    Get PDF
    The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra-but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG-but not the pre-SMA-exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Beta oscillations reflect supramodal information during perceptual judgment

    No full text
    Item does not contain fulltex
    corecore