184 research outputs found

    Response to the Reply on behalf of the ‘Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area’ (MAK Commission) by Andrea Hartwig Karlsruhe Institute of Technology (KIT)

    Get PDF
    Prof. Hartwig commented [1] as chair of the MAK Commission on Morfeld et al. 2015 [2]. We would like to thank the Commission for commenting on our review. However, the MAK Commission did not address a number of important issues raised in our paper

    Where diversity comes from and why it matters?

    Full text link
    In this essay, I describe some of the benefits of cognitive diversity in a complex world as well as the origins of that diversity. The essay has two main parts sandwiched between a brief description of what I mean by diversity and complexity, as well as a brief discussion of whether social systems produce sufficient diversity. In the first part, I describe models that provide insight into why we see the levels of diversity that we do. These models rest on social psychological foundations but borrow ideas from economics as well as population genetics. In the second part, I describe the functional benefits of diversity. I show how diverse predictive models can make a collection of people better able to make accurate predictions, how diverse perspectives and heuristics can enable groups of problem solvers to find innovative new solutions to problems, and how diverse behaviors and representations of the world can make a society more robust. Copyright © 2014 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107520/1/ejsp2016.pd

    Nanomedical Theranostics in Cardiovascular Disease

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. New diagnostic and therapeutic strategies are needed to mitigate this public health issue. Advances in nanotechnology have generated innovative strategies for diagnosis and therapy in a variety of diseases, foremost in cancer. Based on these studies, a novel concept referred to as nanomedical theranostics, or the combinatory application of nanoparticulate agents to allow diagnostic therapy, is being explored to enable image-guided, personalized, or targeted treatment. Preclinically, theranostics have been gradually applied to CVD with several interesting and encouraging findings. This article summarizes studies and challenges of nanotheranostic strategies in CVD. It also evaluates nanotheranostic strategies that may potentially be utilized to benefit patients

    Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans

    Get PDF
    Background We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of “granular biopersistent particles without known specific toxicity” (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK’s human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. Methods We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. Results The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Conclusion Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.International Carbon Black Associatio

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF
    corecore